Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Exp Appl Acarol ; 60(4): 521-30, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23325416

RESUMO

Varroa destructor is a major pest in world beekeeping. It was first detected in Madagascar in 2010 on the endemic honeybee Apis mellifera unicolor. To evaluate V. destructor spread dynamics in Madagascar a global survey was conducted in 2011-2012. A total of 695 colonies from 30 districts were inspected for the presence of mites. 2 years after its introduction, nine districts were found infested. Varroa destructor spread was relatively slow compared to other countries with a maximum progression of 40 km per year, the five newly infested districts being located next to the first infested ones. The incidence of mite infestation was also investigated by monitoring 73 colonies from five apiaries during 1 year (2011-2012). Sixty percent of local colony mortality was recorded after 1 year of survey. Varroa destructor strain determination was done by partial sequencing of the cytochrome oxidase I gene of 13 phoretic mites sampled in five districts. A single V. destructor mitochondrial haplotype was detected, the Korean type, also present in the closest African countries. A global pathogen survey was also conducted on the colonies inspected for mite presence. The greater wax moth, Galleria mellonella has been found in all colonies all over the country. Two other pathogens and morphological abnormalities in workers, such as deformed wings, were found associated with only V. destructor presence. A prevention management plan must be implemented to delimit mite spread across the island.


Assuntos
Abelhas/parasitologia , Varroidae/fisiologia , Animais , DNA Mitocondrial/química , Monitoramento Ambiental , Interações Hospedeiro-Parasita , Incidência , Madagáscar , Controle de Pragas , Dinâmica Populacional , Análise de Sequência de DNA , Varroidae/genética
2.
Evol Appl ; 16(1): 48-61, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36699130

RESUMO

An increasing number of invasive fruit fly pests are colonizing new grounds. With this study, we aimed to uncover the invasion pathways of the oriental fruit fly, Bactrocera dorsalis into the islands of the Indian Ocean. By using genome-wide SNP data and a multipronged approach consisting of PCA, ancestry analysis, phylogenetic inference, and kinship networks, we were able to resolve two independent invasion pathways. A western invasion pathway involved the stepping-stone migration of B. dorsalis from the east African coast into the Comoros, along Mayotte and into Madagascar with a decreasing genetic diversity. The Mascarene islands (Reunion and Mauritius), on the contrary, were colonized directly from Asia and formed a distinct cluster. The low nucleotide diversity suggests that only a few genotypes invaded the Mascarenes. The presence of many long runs of homozygosity (ROH) in the introduced populations is indicative of population bottlenecks, with evidence of a more severe bottleneck for populations along the western migration pathway than on the Mascarene islands. More strict phytosanitary regulations are recommended in order to prevent the further spread of B. dorsalis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa