RESUMO
The cattle breeding industry, through both of its derivatives (dairy and beef), provides 81% of milk and 22% of meat required globally. If a breeding bull is sub-fertile, this impacts herd conception and birth rates, and it is generally accepted that having a proactive genetic screening programme can prevent further losses. Chromosome translocations are the leading genetic cause of infertility in livestock and, in cattle, this extends beyond the classical 1:29 to other Robertsonian translocations (RobTs) and to reciprocal translocations (RECTs). The incidence of both (collectively termed RTs) varies between breeds and herds; however, we estimate that RECTs are, most likely, at least twice as common as RobTs. The purpose of this study was to develop an industry economic model to estimate the financial impact of an RT event at the herd level. If we assume a conservative incidence rate of 0.4% for Rob1:29 with each one impacting the conception rate by 5%, we calculate that actively screening for and removing a Rob1:29 bull could benefit an impacted herd by GBP 2.3 million (approx. USD 2.8 million) over six years. A recently updated screening protocol developed in our lab for all RTs, however (with a projected combined incidence of 1.2%, impacting conception rates by 10%), could benefit an impacted herd by GBP 7.2 million (nearly USD 9 million) for each RT found. For an industry worth USD 827.4 billion (dairy) and USD 467.7 billion (beef), expanding knowledge on incidence and further dissection of the potential costs (financial and environmental) from RTs is essential to prevent further losses.
RESUMO
Incompatibilities on the sex chromosomes are important in the evolution of hybrid male sterility, but the evolutionary forces underlying this phenomenon are unclear. House mice (Mus musculus) lineages have provided powerful models for understanding the genetic basis of hybrid male sterility. X chromosome-autosome interactions cause strong incompatibilities in M. musculus F1 hybrids, but variation in sterility phenotypes suggests a more complex genetic basis. In addition, XY chromosome conflict has resulted in rapid expansions of ampliconic genes with dosage-dependent expression that is essential to spermatogenesis. Here, we evaluated the contribution of XY lineage mismatch to male fertility and stage-specific gene expression in hybrid mice. We performed backcrosses between two house mouse subspecies to generate reciprocal Y-introgression strains and used these strains to test the effects of XY mismatch in hybrids. Our transcriptome analyses of sorted spermatid cells revealed widespread overexpression of the X chromosome in sterile F1 hybrids independent of Y chromosome subspecies origin. Thus, postmeiotic overexpression of the X chromosome in sterile F1 mouse hybrids is likely a downstream consequence of disrupted meiotic X-inactivation rather than XY gene copy number imbalance. Y chromosome introgression did result in subfertility phenotypes and disrupted expression of several autosomal genes in mice with an otherwise nonhybrid genomic background, suggesting that Y-linked incompatibilities contribute to reproductive barriers, but likely not as a direct consequence of XY conflict. Collectively, these findings suggest that rapid sex chromosome gene family evolution driven by genomic conflict has not resulted in strong male reproductive barriers between these subspecies of house mice.
Assuntos
Hibridização Genética , Infertilidade Masculina , Humanos , Masculino , Camundongos , Animais , Espermatogênese/genética , Cromossomos Sexuais/genética , Cromossomo X/genética , Infertilidade Masculina/genéticaRESUMO
With demand rising, pigs are the world's leading source of meat protein; however significant economic loss and environmental damage can be incurred if boars used for artificial insemination (AI) are hypoprolific (sub-fertile). Growing evidence suggests that semen analysis is an unreliable tool for diagnosing hypoprolificacy, with litter size and farrowing rate being more applicable. Once such data are available, however, any affected boar will have been in service for some time, with significant financial and environmental losses incurred. Reciprocal translocations (RTs) are the leading cause of porcine hypoprolificacy, reportedly present in 0.47% of AI boars. Traditional standard karyotyping, however, relies on animal specific expertise and does not detect more subtle (cryptic) translocations. Previously, we reported development of a multiple hybridisation fluorescence in situ hybridisation (FISH) strategy; here, we report on its use in 1641 AI boars. A total of 15 different RTs were identified in 69 boars, with four further animals XX/XY chimeric. Therefore, 4.5% had a chromosome abnormality (4.2% with an RT), a 0.88% incidence. Revisiting cases with both karyotype and FISH information, we reanalysed captured images, asking whether the translocation was detectable by karyotyping alone. The results suggest that chromosome translocations in boars may be significantly under-reported, thereby highlighting the need for pre-emptive screening by this method before a boar enters a breeding programme.
Assuntos
Hibridização in Situ Fluorescente , Suínos/genética , Translocação Genética , Animais , Bandeamento Cromossômico , Cromossomos de Mamíferos/genética , MetáfaseRESUMO
Fbxo7 is the substrate-recognition subunit of an SCF-type ubiquitin E3 ligase complex. It has physiologically important functions in regulating mitophagy, proteasome activity and the cell cycle in multiple cell types, like neurons, lymphocytes and erythrocytes. Here, we show that in addition to the previously known Parkinsonian and hematopoietic phenotypes, male mice with reduced Fbxo7 expression are sterile. In these males, despite successful meiosis, nuclear elongation and eviction of histones from chromatin, the developing spermatids are phagocytosed by Sertoli cells during late spermiogenesis, as the spermatids undergo cytoplasmic remodeling. Surprisingly, despite the loss of all germ cells, there was no evidence of the symplast formation and cell sloughing that is typically associated with spermatid death in other mouse sterility models, suggesting that novel cell death and/or cell disposal mechanisms may be engaged in Fbxo7 mutant males. Mutation of the Drosophila Fbxo7 ortholog, nutcracker (ntc) also leads to sterility with germ cell death during cytoplasmic remodeling, indicating that the requirement for Fbxo7 at this stage is conserved. The ntc phenotype was attributed to decreased levels of the proteasome regulator, DmPI31 and reduced proteasome activity. Consistent with the fly model, we observe a reduction in PI31 levels in mutant mice; however, there is no alteration in proteasome activity in whole mouse testes. Our results are consistent with findings that Fbxo7 regulates PI31 protein levels, and indicates that a defect at the late stages of spermiogenesis, possibly due to faulty spatial dynamics of proteasomes during cytoplasmic remodeling, may underlie the fertility phenotype in mice.