Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 289(17): 11816-11828, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24619423

RESUMO

Beyond its presence in stable microtubules, tubulin acetylation can be boosted after UV exposure or after nutrient deprivation, but the mechanisms of microtubule hyperacetylation are still unknown. In this study, we show that this hyperacetylation is a common response to several cellular stresses that involves the stimulation of the major tubulin acetyltransferase MEC-17. We also demonstrate that the acetyltransferase p300 negatively regulates MEC-17 expression and is sequestered on microtubules upon stress. We further show that reactive oxygen species of mitochondrial origin are required for microtubule hyperacetylation by activating the AMP kinase, which in turn mediates MEC-17 phosphorylation upon stress. Finally, we show that preventing microtubule hyperacetylation by knocking down MEC-17 affects cell survival under stress conditions and starvation-induced autophagy, thereby pointing out the importance of this rapid modification as a broad cell response to stress.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Acetiltransferases/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação , Acetiltransferases/genética , Animais , Sequência de Bases , Linhagem Celular , Humanos , Camundongos , Microtúbulos/metabolismo , RNA Interferente Pequeno
2.
J Biol Chem ; 285(31): 24184-94, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20484055

RESUMO

The molecular mechanisms underlying microtubule participation in autophagy are not known. In this study, we show that starvation-induced autophagosome formation requires the most dynamic microtubule subset. Upon nutrient deprivation, labile microtubules specifically recruit markers of autophagosome formation like class III-phosphatidylinositol kinase, WIPI-1, the Atg12-Atg5 conjugate, and LC3-I, whereas mature autophagosomes may bind to stable microtubules. We further found that upon nutrient deprivation, tubulin acetylation increases both in labile and stable microtubules and is required to allow autophagy stimulation. Tubulin hyperacetylation on lysine 40 enhances kinesin-1 and JIP-1 recruitment on microtubules and allows JNK phosphorylation and activation. JNK, in turn, triggers the release of Beclin 1 from Bcl-2-Beclin 1 complexes and its recruitment on microtubules where it may initiate autophagosome formation. Finally, although kinesin-1 functions to carry autophagosomes in basal conditions, it is not involved in motoring autophagosomes after nutrient deprivation. Our results show that the dynamics of microtubules and tubulin post-translational modifications play a major role in the regulation of starvation-induced autophagy.


Assuntos
Autofagia , Microtúbulos/metabolismo , Tubulina (Proteína)/química , Acetilação , Proteínas Reguladoras de Apoptose/química , Proteína Beclina-1 , Dineínas/química , Células HeLa , Humanos , Cinesinas/química , Lisina/química , Proteínas de Membrana/química , Modelos Biológicos , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa