RESUMO
The non-fluent/agrammatic variant of primary progressive aphasia (nfvPPA) is a neurodegenerative syndrome primarily defined by the presence of apraxia of speech (AoS) and/or expressive agrammatism. In addition, many patients exhibit dysarthria and/or receptive agrammatism. This leads to substantial phenotypic variation within the speech-language domain across individuals and time, in terms of both the specific combination of symptoms as well as their severity. How to resolve such phenotypic heterogeneity in nfvPPA is a matter of debate. 'Splitting' views propose separate clinical entities: 'primary progressive apraxia of speech' when AoS occurs in the absence of expressive agrammatism, 'progressive agrammatic aphasia' (PAA) in the opposite case, and 'AOS + PAA' when mixed motor speech and language symptoms are clearly present. While therapeutic interventions typically vary depending on the predominant symptom (e.g. AoS versus expressive agrammatism), the existence of behavioural, anatomical and pathological overlap across these phenotypes argues against drawing such clear-cut boundaries. In the current study, we contribute to this debate by mapping behaviour to brain in a large, prospective cohort of well characterized patients with nfvPPA (n = 104). We sought to advance scientific understanding of nfvPPA and the neural basis of speech-language by uncovering where in the brain the degree of MRI-based atrophy is associated with inter-patient variability in the presence and severity of AoS, dysarthria, expressive agrammatism or receptive agrammatism. Our cross-sectional examination of brain-behaviour relationships revealed three main observations. First, we found that the neural correlates of AoS and expressive agrammatism in nfvPPA lie side by side in the left posterior inferior frontal lobe, explaining their behavioural dissociation/association in previous reports. Second, we identified a 'left-right' and 'ventral-dorsal' neuroanatomical distinction between AoS versus dysarthria, highlighting (i) that dysarthria, but not AoS, is significantly influenced by tissue loss in right-hemisphere motor-speech regions; and (ii) that, within the left hemisphere, dysarthria and AoS map onto dorsally versus ventrally located motor-speech regions, respectively. Third, we confirmed that, within the large-scale grammar network, left frontal tissue loss is preferentially involved in expressive agrammatism and left temporal tissue loss in receptive agrammatism. Our findings thus contribute to define the function and location of the epicentres within the large-scale neural networks vulnerable to neurodegenerative changes in nfvPPA. We propose that nfvPPA be redefined as an umbrella term subsuming a spectrum of speech and/or language phenotypes that are closely linked by the underlying neuroanatomy and neuropathology.
Assuntos
Afasia Primária Progressiva , Apraxias , Afasia Primária Progressiva não Fluente , Humanos , Afasia de Broca/patologia , Estudos Prospectivos , Disartria , Fala , Estudos Transversais , Apraxias/patologia , Afasia Primária Progressiva/patologia , Afasia Primária Progressiva não Fluente/complicaçõesRESUMO
The logopenic variant of primary progressive aphasia (lvPPA) is a neurodegenerative syndrome characterized linguistically by gradual loss of repetition and naming skills resulting from left posterior temporal and inferior parietal atrophy. Here, we sought to identify which specific cortical loci are initially targeted by the disease (epicenters) and investigate whether atrophy spreads through predetermined networks. First, we used cross-sectional structural MRI data from individuals with lvPPA to define putative disease epicenters using a surface-based approach paired with an anatomically fine-grained parcellation of the cortical surface (i.e., HCP-MMP1.0 atlas). Second, we combined cross-sectional functional MRI data from healthy controls and longitudinal structural MRI data from individuals with lvPPA to derive the epicenter-seeded resting-state networks most relevant to lvPPA symptomatology and ascertain whether functional connectivity in these networks predicts longitudinal atrophy spread in lvPPA. Our results show that two partially distinct brain networks anchored to the left anterior angular and posterior superior temporal gyri epicenters were preferentially associated with sentence repetition and naming skills in lvPPA. Critically, the strength of connectivity within these two networks in the neurologically-intact brain significantly predicted longitudinal atrophy progression in lvPPA. Taken together, our findings indicate that atrophy progression in lvPPA, starting from inferior parietal and temporoparietal junction regions, predominantly follows at least two partially nonoverlapping pathways, which may influence the heterogeneity in clinical presentation and prognosis.
Assuntos
Doença de Alzheimer , Afasia Primária Progressiva , Humanos , Afasia Primária Progressiva/diagnóstico por imagem , Estudos Transversais , Testes Neuropsicológicos , Encéfalo , Atrofia/patologia , Doença de Alzheimer/patologiaRESUMO
BACKGROUND: Pneumococcal serotypes differ in antimicrobial susceptibility. However, patterns and causes of this variation are not comprehensively understood. METHODS: We undertook a systematic review of epidemiologic studies of pneumococci isolated from carriage or invasive disease among children globally from 2000-2019. We evaluated associations of each serotype with nonsusceptibility to penicillin, macrolides, and trimethoprim/sulfamethoxazole. We evaluated differences in the prevalence of nonsusceptibility to major antibiotic classes across serotypes using random-effects meta-regression models and assessed changes in prevalence of nonsusceptibility after implementation of pneumococcal conjugate vaccines (PCVs). We also evaluated associations between biological characteristics of serotypes and their likelihood of nonsusceptibility to each drug. RESULTS: We included data from 129 studies representing 32 187 isolates across 52 countries. Within serotypes, the proportion of nonsusceptible isolates varied geographically and over time, in settings using and those not using PCVs. Factors predicting enhanced fitness of serotypes in colonization as well as enhanced pathogenicity were each associated with higher likelihood of nonsusceptibility to penicillin, macrolides, and trimethoprim/sulfamethoxazole. Increases in prevalence of nonsusceptibility following PCV implementation were evident among non-PCV serotypes, including 6A, 6C, 15A, 15B/C, 19A, and 35B; however, this pattern was not universally evident among non-PCV serotypes. Postvaccination increases in nonsusceptibility for serotypes 6A and 19A were attenuated in settings that implemented PCV13. CONCLUSIONS: In pneumococci, nonsusceptibility to penicillin, macrolides, and trimethoprim/sulfamethoxazole is associated with more frequent opportunities for antibiotic exposure during both prolonged carriage episodes and when serotypes cause disease. These findings suggest multiple pathways leading to resistance selection in pneumococci.
Assuntos
Infecções Pneumocócicas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Criança , Humanos , Lactente , Macrolídeos/farmacologia , Nasofaringe , Penicilinas/farmacologia , Penicilinas/uso terapêutico , Infecções Pneumocócicas/epidemiologia , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas , Sorogrupo , Streptococcus pneumoniae , Combinação Trimetoprima e Sulfametoxazol/farmacologia , Combinação Trimetoprima e Sulfametoxazol/uso terapêutico , Vacinas ConjugadasRESUMO
State of the art: Semantic dementia (SD) patients including semantic variant primary progressive aphasia (svPPA) and semantic behavioral variant frontotemporal dementia (sbvFTD) patients show semantic difficulties identifying faces and known people related to right anterior temporal lobe (ATL) atrophy. However, it remains unclear whether they also have perceptual deficits in face recognition. Methodology: We selected 74 SD patients (54 with svPPA and predominant left ATL atrophy and 20 with sbvFTD and predominant right ATL atrophy) and 36 cognitively healthy controls (HC) from UCSF Memory and Aging Center. They underwent a perceptual face processing test (Benton facial recognition test-short version; BFRT-S), and semantic face processing tests (UCSF Famous people battery - Recognition, Naming, Semantic associations - pictures and words subtests), as well as structural magnetic resonance imaging (MRI). Neural correlates with the task's performance were conducted with a Voxel-based morphometry approach using CAT12. Results: svPPA and sbvFTD patients were impaired on all semantic face processing tests, with sbvFTD patients performing significantly lower on the famous faces' recognition task in comparison to svPPA, and svPPA performing significantly lower on the naming task in comparison to sbvFTD. These tasks predominantly correlated with gray matter (GM) volumes in the right and left ATL, respectively. Compared to HC, both svPPA and sbvFTD patients showed preserved performance on the perceptual face processing test (BFRT-S), and performance on the BFRT-S negatively correlated with GM volume in the right posterior superior temporal sulcus (pSTS). Conclusion: Our results suggest that early in the disease, with the atrophy mostly restricted to the anterior temporal regions, SD patients do not present with perceptual deficits. However, more severe SD cases with atrophy in right posterior temporal regions might show lower performance on face perception tests, in addition to the semantic face processing deficits. Early sparing of face perceptual deficits in SD patients, regardless of hemispheric lateralization, furthers our understanding of clinical phenomenology and therapeutical approaches of this complex disease.
RESUMO
STATE OF THE ART: Semantic dementia (SD) patients including semantic variant primary progressive aphasia (svPPA) and semantic behavioral variant frontotemporal dementia (sbvFTD) patients show semantic difficulties identifying faces and known people related to right anterior temporal lobe (ATL) atrophy. However, it remains unclear whether they also have perceptual deficits in face recognition. METHODOLOGY: We selected 74 SD patients (54 with svPPA and predominant left ATL atrophy and 20 with sbvFTD and predominant right ATL atrophy) and 36 cognitively healthy controls (HC) from UCSF Memory and Aging Center. They underwent a perceptual face processing test (Benton facial recognition test-short version; BFRT-S), and semantic face processing tests (UCSF Famous people battery - Recognition, Naming, Semantic associations - pictures and words subtests), as well as structural magnetic resonance imaging (MRI). Neural correlates with the task's performance were conducted with a Voxel-based morphometry approach using CAT12. RESULTS: svPPA and sbvFTD patients were impaired on all semantic face processing tests, with sbvFTD patients performing significantly lower on the famous faces' recognition task in comparison to svPPA, and svPPA performing significantly lower on the naming task in comparison to sbvFTD. These tasks predominantly correlated with grey matter (GM) volumes in the right and left ATL, respectively. Compared to HC, both svPPA and sbvFTD patients showed preserved performance on the perceptual face processing test (BFRT-S), and performance on the BFRT-S negatively correlated with GM volume in the right posterior superior temporal sulcus (pSTS). CONCLUSION: Our results suggest that early in the disease, with the atrophy mostly restricted to the anterior temporal regions, SD patients do not present with perceptual deficits. However, more severe SD cases with atrophy in right posterior temporal regions might show lower performance on face perception tests, in addition to the semantic face processing deficits. Early sparing of face perceptual deficits in SD patients, regardless of hemispheric lateralization, furthers our understanding of clinical phenomenology and therapeutical approaches of this complex disease.
RESUMO
Morphosyntactic assessments are important for characterizing individuals with nonfluent/agrammatic variant primary progressive aphasia (nfvPPA). Yet, standard tests are subject to examiner bias and often fail to differentiate between nfvPPA and logopenic variant PPA (lvPPA). Moreover, relevant neural signatures remain underexplored. Here, we leverage natural language processing tools to automatically capture morphosyntactic disturbances and their neuroanatomical correlates in 35 individuals with nfvPPA relative to 10 healthy controls (HC) and 26 individuals with lvPPA. Participants described a picture, and ensuing transcripts were analyzed via part-of-speech tagging to extract sentence-related features (e.g., subordinating and coordinating conjunctions), verbal-related features (e.g., tense markers), and nominal-related features (e.g., subjective and possessive pronouns). Gradient boosting machines were used to classify between groups using all features. We identified the most discriminant morphosyntactic marker via a feature importance algorithm and examined its neural correlates via voxel-based morphometry. Individuals with nfvPPA produced fewer morphosyntactic elements than the other two groups. Such features robustly discriminated them from both individuals with lvPPA and HCs with an AUC of .95 and .82, respectively. The most discriminatory feature corresponded to subordinating conjunctions was correlated with cortical atrophy within the left posterior inferior frontal gyrus across groups (pFWE < .05). Automated morphosyntactic analysis can efficiently differentiate nfvPPA from lvPPA. Also, the most sensitive morphosyntactic markers correlate with a core atrophy region of nfvPPA. Our approach, thus, can contribute to a key challenge in PPA diagnosis.
Assuntos
Afasia Primária Progressiva , Humanos , Afasia Primária Progressiva/diagnóstico por imagem , Fala , Imageamento por Ressonância Magnética , Idioma , AtrofiaRESUMO
Prior research has revealed distinctive patterns of impaired language abilities across the three variants of Primary Progressive Aphasia (PPA): nonfluent/agrammatic (nfvPPA), logopenic (lvPPA) and semantic (svPPA). However, little is known about whether, and to what extent, non-verbal cognitive abilities, such as processing speed, are impacted in PPA patients. This is because neuropsychological tests typically contain linguistic stimuli and require spoken output, being therefore sensitive to verbal deficits in aphasic patients. The aim of this study is to investigate potential differences in processing speed between PPA patients and healthy controls, and among the three PPA variants, using a brief non-verbal tablet-based task (Match) modeled after the WAIS-III digit symbol coding test, and to determine its neural correlates. Here, we compared performance on the Match task between PPA patients (n = 61) and healthy controls (n = 59) and across the three PPA variants. We correlated performance on Match with voxelwise gray and white matter volumes. We found that lvPPA and nfvPPA patients performed significantly worse on Match than healthy controls and svPPA patients. Worse performance on Match across PPA patients was associated with reduced gray matter volume in specific parts of the left middle frontal gyrus, superior parietal lobule, and precuneus, and reduced white matter volume in the left parietal lobe. To conclude, our behavioral findings reveal that processing speed is differentially impacted across the three PPA variants and provide support for the potential clinical utility of a tabled-based task (Match) to assess non-verbal cognition. In addition, our neuroimaging findings confirm the importance of a set of fronto-parietal regions that previous research has associated with processing speed and executive control. Finally, our behavioral and neuroimaging findings combined indicate that differences in processing speed are largely explained by the unequal distribution of atrophy in these fronto-parietal regions across the three PPA variants.
Assuntos
Afasia Primária Progressiva , Humanos , Afasia Primária Progressiva/diagnóstico por imagem , Afasia Primária Progressiva/psicologia , Velocidade de Processamento , Imageamento por Ressonância Magnética/métodos , Substância Cinzenta/diagnóstico por imagem , Córtex CerebralRESUMO
BACKGROUND AND OBJECTIVES: Progressive focal anterior temporal lobe (ATL) neurodegeneration has been historically called semantic dementia. More recently, semantic variant primary progressive aphasia (svPPA) and semantic behavioral variant frontotemporal dementia (sbvFTD) have been linked with predominant left and right ATL neurodegeneration, respectively. Nonetheless, clinical tools for an accurate diagnosis of sbvFTD are still lacking. Expressive prosody refers to the modulation of pitch, loudness, tempo, and quality of voice used to convey emotional and linguistic information and has been linked to bilateral but right-predominant frontotemporal functioning. Changes in expressive prosody can be detected with semiautomated methods and could represent a useful diagnostic marker of socioemotional functioning in sbvFTD. METHODS: Participants underwent a comprehensive neuropsychological and language evaluation and a 3T MRI at the University of California San Francisco. Each participant provided a verbal description of the picnic scene from the Western Aphasia Battery. The fundamental frequency (f0) range, an acoustic measure of pitch variability, was extracted for each participant. We compared the f0 range between groups and investigated associations with an informant-rated measure of empathy, a facial emotion labeling task, and gray matter (GM) volumes using voxel-based morphometry. RESULTS: Twenty-eight patients with svPPA, 18 with sbvFTD, and 18 healthy controls (HCs) were included. f0 range was significantly different across groups: patients with sbvFTD showed reduced f0 range in comparison with both patients with svPPA (mean difference of -1.4 ± 2.4 semitones; 95% CI -2.4 to -0.4]; p < 0.005) and HCs (mean difference of -1.9 ± 3.0 semitones; 95% CI -3.0 to -0.7]; p < 0.001). A higher f0 range was correlated with a greater informant-rated empathy (r = 0.355; p ≤ 0.05), but not facial emotion labeling. Finally, the lower f0 range was correlated with lower GM volume in the right superior temporal gyrus, encompassing anterior and posterior portions (p < 0.05 FWE cluster corrected). DISCUSSION: Expressive prosody may be a useful clinical marker of sbvFTD. Reduced empathy is a core symptom in sbvFTD; the present results extend this to prosody, a core component of social interaction, at the intersection of speech and emotion. They also inform the long-standing debate on the lateralization of expressive prosody in the brain, highlighting the critical role of the right superior temporal lobe.
Assuntos
Afasia Primária Progressiva , Demência Frontotemporal , Humanos , Encéfalo , Emoções , Empatia , Lobo Temporal/diagnóstico por imagem , Córtex Cerebral , Demência Frontotemporal/diagnóstico por imagem , Imageamento por Ressonância Magnética , Afasia Primária Progressiva/psicologiaRESUMO
Semantic variant primary progressive aphasia is a clinical syndrome characterized by marked semantic deficits, anterior temporal lobe atrophy and reduced connectivity within a distributed set of regions belonging to the functional network associated with semantic processing. However, to fully depict the clinical signature of semantic variant primary progressive aphasia, it is necessary to also characterize preserved neural networks and linguistic abilities, such as those subserving speech production. In this case-control observational study, we employed whole-brain seed-based connectivity on task-free MRI data of 32 semantic variant primary progressive aphasia patients and 46 healthy controls to investigate the functional connectivity of the speech production network and its relationship with the underlying grey matter. We investigated brain-behaviour correlations with speech fluency measures collected through clinical tests (verbal agility) and connected speech (speech rate and articulation rate). As a control network, we also investigated functional connectivity within the affected semantic network. Patients presented with increased connectivity in the speech production network between left inferior frontal and supramarginal regions, independent of underlying grey matter volume. In semantic variant primary progressive aphasia patients, preserved (verbal agility) and increased (articulation rate) speech fluency measures correlated with increased connectivity between inferior frontal and supramarginal regions. As expected, patients demonstrated decreased functional connectivity in the semantic network (dependent on the underlying grey matter atrophy) associated with average nouns' age of acquisition during connected speech. Collectively, these results provide a compelling model for studying compensation mechanisms in response to disease that might inform the design of future rehabilitation strategies in semantic variant primary progressive aphasia.
RESUMO
The logopenic variant of primary progressive aphasia (lvPPA) is a neurodegenerative syndrome characterized linguistically by gradual loss of repetition and naming skills, resulting from left posterior temporal and inferior parietal atrophy. Here, we sought to identify which specific cortical loci are initially targeted by the disease (epicenters) and investigate whether atrophy spreads through pre-determined networks. First, we used cross-sectional structural MRI data from individuals with lvPPA to define putative disease epicenters using a surface-based approach paired with an anatomically-fine-grained parcellation of the cortical surface (i.e., HCP-MMP1.0 atlas). Second, we combined cross-sectional functional MRI data from healthy controls and longitudinal structural MRI data from individuals with lvPPA to derive the epicenter-seeded resting-state networks most relevant to lvPPA symptomatology and ascertain whether functional connectivity in these networks predicts longitudinal atrophy spread in lvPPA. Our results show that two partially distinct brain networks anchored to the left anterior angular and posterior superior temporal gyri epicenters were preferentially associated with sentence repetition and naming skills in lvPPA. Critically, the strength of connectivity within these two networks in the neurologically-intact brain significantly predicted longitudinal atrophy progression in lvPPA. Taken together, our findings indicate that atrophy progression in lvPPA, starting from inferior parietal and temporo-parietal junction regions, predominantly follows at least two partially non-overlapping pathways, which may influence the heterogeneity in clinical presentation and prognosis.
RESUMO
Introduction: Remote smartphone assessments of cognition, speech/language, and motor functioning in frontotemporal dementia (FTD) could enable decentralized clinical trials and improve access to research. We studied the feasibility and acceptability of remote smartphone data collection in FTD research using the ALLFTD Mobile App (ALLFTD-mApp). Methods: A diagnostically mixed sample of 214 participants with FTD or from familial FTD kindreds (asymptomatic: CDR®+NACC-FTLD = 0 [N = 101]; prodromal: 0.5 [N = 49]; symptomatic ≥1 [N = 51]; not measured [N = 13]) were asked to complete ALLFTD-mApp tests on their smartphone three times within 12 days. They completed smartphone familiarity and participation experience surveys. Results: It was feasible for participants to complete the ALLFTD-mApp on their own smartphones. Participants reported high smartphone familiarity, completed â¼ 70% of tasks, and considered the time commitment acceptable (98% of respondents). Greater disease severity was associated with poorer performance across several tests. Discussion: These findings suggest that the ALLFTD-mApp study protocol is feasible and acceptable for remote FTD research. HIGHLIGHTS: The ALLFTD Mobile App is a smartphone-based platform for remote, self-administered data collection.The ALLFTD Mobile App consists of a comprehensive battery of surveys and tests of executive functioning, memory, speech and language, and motor abilities.Remote digital data collection using the ALLFTD Mobile App was feasible in a multicenter research consortium that studies FTD. Data was collected in healthy controls and participants with a range of diagnoses, particularly FTD spectrum disorders.Remote digital data collection was well accepted by participants with a variety of diagnoses.
RESUMO
Primary progressive aphasia (PPA) is a clinical syndrome in which patients progressively lose speech and language abilities. Three variants are recognized: logopenic (lvPPA), associated with phonology and/or short-term verbal memory deficits accompanied by left temporo-parietal atrophy; semantic (svPPA), associated with semantic deficits and anterior temporal lobe (ATL) atrophy; non-fluent (nfvPPA) associated with grammar and/or speech-motor deficits and inferior frontal gyrus (IFG) atrophy. Here, we set out to investigate whether the three variants of PPA can be dissociated based on error patterns in a single language task. We recruited 21 lvPPA, 28 svPPA, and 24 nfvPPA patients, together with 31 healthy controls, and analyzed their performance on an auditory noun-to-verb generation task, which requires auditory analysis of the input, access to and selection of relevant lexical and semantic knowledge, as well as preparation and execution of speech. Task accuracy differed across the three variants and controls, with lvPPA and nfvPPA having the lowest and highest accuracy, respectively. Critically, machine learning analysis of the different error types yielded above-chance classification of patients into their corresponding group. An analysis of the error types revealed clear variant-specific effects: lvPPA patients produced the highest percentage of "not-a-verb" responses and the highest number of semantically related nouns (production of baseball instead of throw to noun ball); in contrast, svPPA patients produced the highest percentage of "unrelated verb" responses and the highest number of light verbs (production of take instead of throw to noun ball). Taken together, our findings indicate that error patterns in an auditory verb generation task are associated with the breakdown of different neurocognitive mechanisms across PPA variants. Specifically, they corroborate the link between temporo-parietal regions with lexical processing, as well as ATL with semantic processes. These findings illustrate how the analysis of pattern of responses can help PPA phenotyping and heighten diagnostic sensitivity, while providing insights on the neural correlates of different components of language.
RESUMO
BACKGROUND AND OBJECTIVES: Motor speech function, including speech timing, is a key domain for diagnosing nonfluent/agrammatic variant primary progressive aphasia (nfvPPA). Yet, standard assessments use subjective, specialist-dependent evaluations, undermining reliability and scalability. Moreover, few studies have examined relevant anatomo-clinical alterations in patients with pathologically confirmed diagnoses. This study overcomes such caveats using automated speech timing analyses in a unique cohort of autopsy-proven cases. METHODS: In a cross-sectional study, we administered an overt reading task and quantified articulation rate, mean syllable and pause duration, and syllable and pause duration variability. Neuroanatomical disruptions were assessed using cortical thickness and white matter (WM) atrophy analysis. RESULTS: We evaluated 22 persons with nfvPPA (mean age: 67.3 years; 13 female patients) and confirmed underlying 4-repeat tauopathy, 15 persons with semantic variant primary progressive aphasia (svPPA; mean age: 66.5 years; 8 female patients), and 10 healthy controls (HCs; 70 years; 5 female patients). All 5 speech timing measures revealed alterations in persons with nfvPPA relative to both the HC and svPPA groups, controlling for dementia severity. The articulation rate robustly discriminated individuals with nfvPPA from HCs (area under the ROC curve [AUC] = 0.95), outperforming specialist-dependent perceptual measures of dysarthria and apraxia of speech severity. Patients with nfvPPA exhibited structural abnormalities in left precentral and middle frontal as well as bilateral superior frontal regions, including their underlying WM. The articulation rate correlated with atrophy of the left pars opercularis and supplementary/presupplementary motor areas. Secondary analyses showed that, controlling for dementia severity, all measures yielded greater deficits in patients with nfvPPA and corticobasal degeneration (nfvPPA-CBD, n = 12) than in those with progressive supranuclear palsy pathology (nfvPPA-PSP, n = 10). The articulation rate robustly discriminated between individuals in each subgroup (AUC = 0.82). More widespread cortical thinning was observed for the nfvPPA-CBD than the nfvPPA-PSP group across frontal regions. DISCUSSION: Automated speech timing analyses can capture specific markers of nfvPPA while potentially discriminating between patients with different tauopathies. Thanks to its objectivity and scalability; this approach could support standard speech assessments. CLASSIFICATION OF EVIDENCE: This study provides Class III evidence that automated speech analysis can accurately differentiate patients with nonfluent PPA from normal controls and patients with semantic variant PPA.
Assuntos
Afasia Primária Progressiva , Afasia Primária Progressiva não Fluente , Idoso , Afasia Primária Progressiva/patologia , Atrofia/complicações , Autopsia , Estudos Transversais , Feminino , Humanos , Reprodutibilidade dos Testes , FalaRESUMO
BACKGROUND: Pneumococcal diseases are a leading cause of morbidity and mortality among children globally, and the burden of these diseases might be worsened by antimicrobial resistance. To understand the effect of pneumococcal conjugate vaccine (PCV) deployment on antimicrobial resistance in pneumococci, we assessed the susceptibility of paediatric pneumococcal isolates to various antimicrobial drugs before and after PCV implementation. METHODS: We did a systematic review of studies reporting antimicrobial susceptibility profiles of paediatric pneumococcal isolates between 2000 and 2020 using PubMed and the Antimicrobial Testing Leadership and Surveillance database (ATLAS; Pfizer). Population-based studies of invasive pneumococcal disease or nasopharyngeal colonisation were eligible for inclusion. As primary outcome measures, we extracted the proportions of isolates that were non-susceptible or resistant to penicillin, macrolides, sulfamethoxazole-trimethoprim, third-generation cephalosporins, and tetracycline from each study. Where available, we also extracted data on pneumococcal serotypes. We estimated changes in the proportion of isolates with reduced susceptibility or resistance to each antibiotic class using random-effects meta-regression models, adjusting for study-level and region-level heterogeneity, as well as secular trends, invasive or colonising isolate source, and countries' per-capita gross domestic product. FINDINGS: From 4910 studies screened for inclusion, we extracted data from 559 studies on 312 783 paediatric isolates. Susceptibility of isolates varied substantially across regions both before and after implementation of any PCV product. On average across all regions, we estimated significant absolute reductions in the proportions of pneumococci showing non-susceptibility to penicillin (11·5%, 95% CI 8·6-14·4), sulfamethoxazole-trimethoprim (9·7%, 4·3-15·2), and third-generation cephalosporins (7·5%, 3·1-11·9), over the 10 years after implementation of any PCV product, and absolute reductions in the proportions of pneumococci resistant to penicillin (7·3%, 5·3-9·4), sulfamethoxazole-trimethoprim (16·0%, 11·0-21·2), third-generation cephalosporins (4·5%, 0·3-8·7), macrolides (3·6%, 0·7-6·6) and tetracycline (2·0%, 0·3-3·7). We did not find evidence of changes in the proportion of isolates non-susceptible to macrolides or tetracycline after PCV implementation. Observed changes in penicillin non-susceptibility were driven, in part, by replacement of vaccine-targeted serotypes with non-vaccine serotypes that were less likely to be non-susceptible. INTERPRETATION: Implementation of PCVs has reduced the proportion of circulating pneumococci resistant to first-line antibiotic treatments for pneumonia. This effect merits consideration in assessments of vaccine impact and investments in coverage improvements. FUNDING: Bill & Melinda Gates Foundation.