Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dig Dis Sci ; 69(1): 18-21, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37919514

RESUMO

A multitude of federally and industry-funded efforts are underway to generate and collect human, animal, microbial, and other sources of data on an unprecedented scale; the results are commonly referred to as "big data." Often vaguely defined, big data refers to large and complex datasets consisting of myriad datatypes that can be integrated to address complex questions. Big data offers a wealth of information that can be accessed only by those who pose the right questions and have sufficient technical knowhow and analytical skills. The intersection comprised of the gut-brain axis, the intestinal microbiome and multi-ome, and several other interconnected organ systems poses particular challenges and opportunities for those engaged in gastrointestinal and liver research. Unfortunately, there is currently a shortage of clinicians, scientists, and physician-scientists with the training needed to use and analyze big data at the scale necessary for widespread implementation of precision medicine. Here, we review the importance of training in the use of big data, the perils of insufficient training, and potential solutions that exist or can be developed to address the dearth of individuals in GI and hepatology research with the necessary level of big data expertise.


Assuntos
Gastroenterologia , Médicos , Humanos , Bolsas de Estudo , Gastroenterologia/educação , Pós-Doutorado
2.
Dig Dis Sci ; 69(1): 22-26, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37919515

RESUMO

Data are being generated, collected, and aggregated in massive quantities at exponentially increasing rates. This "big data," discussed in depth in the first section of this two-part series, is increasingly important to understand the nuances of the gastrointestinal tract and its complex interactions and networks involving a host of other organ systems and microbes. Creating and using these datasets correctly requires comprehensive training; however, current instruction in the integration, analysis, and interpretation of big data appears to lag far behind data acquisition. While opportunities exist for those interested in acquiring the requisite training, these appear to be underutilized, in part due to widespread ignorance of their existence. Here, to address these gaps in knowledge, we highlight existing big data learning opportunities and propose innovative approaches to attain such training. We offer suggestions at both the undergraduate and graduate medical education levels for prospective clinical and basic investigators. Lastly, we categorize training opportunities that can be selected to fit specific needs and timeframes.


Assuntos
Bolsas de Estudo , Gastroenterologia , Humanos , Gastroenterologia/educação , Pós-Doutorado , Estudos Prospectivos , Currículo
3.
Dig Dis Sci ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902460

RESUMO

BACKGROUND: Extraintestinal Manifestations (EIMs) are a common and potentially debilitating complication of Inflammatory Bowel Diseases (IBD), sometimes requiring additional treatment beyond those used to control intestinal disease. IBD-associated arthritis (IAA), a form of spondyloarthritis, is associated with several factors including disease location, sex, and IBD type. However, much remains unknown about other clinical factors predicting development of EIMs. Our goal was to identify additional factors associated with IAA. METHODS: Participants in the LOCATION-IBD cohort were included in this analysis. We performed univariate and multivariate analysis of demographics, clinical data, and patient-reported outcomes data. RESULTS: The LOCATION-IBD cohort included 182 participants with (n = 53) and without (n = 110) joint EIMs and with joint pain of unclear etiology (n = 19). In a multivariate analysis comparing those with and without joint EIMs, female sex (OR = 2.5, p = 0.014), the presence of concomitant autoimmune and inflammatory disorders (OR = 2.5, p = 0.038), and Crohn's disease (OR = 2.9, p = 0.026) were associated with the presence of joint EIMs. CONCLUSION: This analysis reveals patients with IAA are more likely to have concomitant autoimmune disorders. Further studies are needed to confirm this association, understand the mechanisms underlying the common pathogenesis of these concurrent disorders, and evaluate their impact on the treatment of IAA.

4.
Int J Mol Sci ; 25(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38791353

RESUMO

Acetylcholine-activated receptors are divided broadly into two major structurally distinct classes: ligand-gated ion channel nicotinic and G-protein-coupled muscarinic receptors. Each class encompasses several structurally related receptor subtypes with distinct patterns of tissue expression and post-receptor signal transduction mechanisms. The activation of both nicotinic and muscarinic cholinergic receptors has been associated with the induction and progression of gastrointestinal neoplasia. Herein, after briefly reviewing the classification of acetylcholine-activated receptors and the role that nicotinic and muscarinic cholinergic signaling plays in normal digestive function, we consider the mechanics of acetylcholine synthesis and release by neuronal and non-neuronal cells in the gastrointestinal microenvironment, and current methodology and challenges in measuring serum and tissue acetylcholine levels accurately. Then, we critically evaluate the evidence that constitutive and ligand-induced activation of acetylcholine-activated receptors plays a role in promoting gastrointestinal neoplasia. We focus primarily on adenocarcinomas of the stomach, pancreas, and colon, because these cancers are particularly common worldwide and, when diagnosed at an advanced stage, are associated with very high rates of morbidity and mortality. Throughout this comprehensive review, we concentrate on identifying novel ways to leverage these observations for prognostic and therapeutic purposes.


Assuntos
Acetilcolina , Neoplasias Gastrointestinais , Humanos , Neoplasias Gastrointestinais/metabolismo , Neoplasias Gastrointestinais/patologia , Acetilcolina/metabolismo , Animais , Transdução de Sinais , Receptores Muscarínicos/metabolismo , Receptores Nicotínicos/metabolismo
5.
J Biol Chem ; 298(5): 101885, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35367211

RESUMO

The constitutive androstane receptor (CAR) is a nuclear receptor that plays a crucial role in regulating xenobiotic metabolism and detoxification, energy homeostasis, and cell proliferation by modulating the transcription of numerous target genes. CAR activation has been established as the mode of action by which phenobarbital-like nongenotoxic carcinogens promote liver tumor formation in rodents. This paradigm, however, appears to be unrelated to the function of human CAR (hCAR) in hepatocellular carcinoma (HCC), which remains poorly understood. Here, we show that hCAR expression is significantly lower in HCC than that in adjacent nontumor tissues and, importantly, reduced hCAR expression is associated with a worse HCC prognosis. We also show overexpression of hCAR in human hepatoma cells (HepG2 and Hep3B) profoundly suppressed cell proliferation, cell cycle progression, soft-agar colony formation, and the growth of xenografts in nude mice. RNA-Seq analysis revealed that the expression of erythropoietin (EPO), a pleiotropic growth factor, was markedly repressed by hCAR in hepatoma cells. Addition of recombinant EPO in HepG2 cells partially rescued hCAR-suppressed cell viability. Mechanistically, we showed that overexpressing hCAR repressed mitogenic EPO-EPO receptor signaling through dephosphorylation of signal transducer and activator of transcription 3, AKT, and extracellular signal-regulated kinase 1/2. Furthermore, we found that hCAR downregulates EPO expression by repressing the expression and activity of hepatocyte nuclear factor 4 alpha, a key transcription factor regulating EPO expression. Collectively, our results suggest that hCAR plays a tumor suppressive role in HCC development, which differs from that of rodent CAR and offers insight into the hCAR-hepatocyte nuclear factor 4 alpha-EPO axis in human liver tumorigenesis.


Assuntos
Carcinoma Hepatocelular , Receptor Constitutivo de Androstano/metabolismo , Eritropoetina , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proliferação de Células , Eritropoetina/metabolismo , Fator 4 Nuclear de Hepatócito/metabolismo , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Nus
6.
Int J Mol Sci ; 24(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37373394

RESUMO

Despite colorectal cancer remaining a leading worldwide cause of cancer-related death, there remains a paucity of effective treatments for advanced disease. The molecular mechanisms underlying the development of colorectal cancer include altered cell signaling and cell cycle regulation that may result from epigenetic modifications of gene expression and function. Acting as important transcriptional regulators of normal biological processes, zinc finger proteins also play key roles in regulating the cellular mechanisms underlying colorectal neoplasia. These actions impact cell differentiation and proliferation, epithelial-mesenchymal transition, apoptosis, homeostasis, senescence, and maintenance of stemness. With the goal of highlighting promising points of therapeutic intervention, we review the oncogenic and tumor suppressor roles of zinc finger proteins with respect to colorectal cancer tumorigenesis and progression.


Assuntos
Transformação Celular Neoplásica , Neoplasias Colorretais , Humanos , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Carcinogênese/genética , Neoplasias Colorretais/patologia , Dedos de Zinco , Transição Epitelial-Mesenquimal/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica
7.
Int J Mol Sci ; 24(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36768780

RESUMO

Studying individual data types in isolation provides only limited and incomplete answers to complex biological questions and particularly falls short in revealing sufficient mechanistic and kinetic details. In contrast, multi-omics approaches to studying health and disease permit the generation and integration of multiple data types on a much larger scale, offering a comprehensive picture of biological and disease processes. Gastroenterology and hepatobiliary research are particularly well-suited to such analyses, given the unique position of the luminal gastrointestinal (GI) tract at the nexus between the gut (mucosa and luminal contents), brain, immune and endocrine systems, and GI microbiome. The generation of 'big data' from multi-omic, multi-site studies can enhance investigations into the connections between these organ systems and organisms and more broadly and accurately appraise the effects of dietary, pharmacological, and other therapeutic interventions. In this review, we describe a variety of useful omics approaches and how they can be integrated to provide a holistic depiction of the human and microbial genetic and proteomic changes underlying physiological and pathophysiological phenomena. We highlight the potential pitfalls and alternatives to help avoid the common errors in study design, execution, and analysis. We focus on the application, integration, and analysis of big data in gastroenterology and hepatobiliary research.


Assuntos
Gastroenterologia , Proteômica , Humanos , Genômica , Epigenômica , Metabolômica
8.
Am J Physiol Gastrointest Liver Physiol ; 320(4): G627-G643, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33566751

RESUMO

Rho guanine nucleotide exchange factors (RhoGEFs) regulate Rho GTPase activity and cytoskeletal and cell adhesion dynamics. ßPix, a CDC42/RAC family RhoGEF encoded by ARHGEF7, is reported to modulate human colon cancer cell proliferation and postwounding restitution of rat intestinal epithelial monolayers. We hypothesized that ßPix plays a role in maintaining intestinal epithelial homeostasis. To test this hypothesis, we examined ßPix distribution in the human and murine intestine and created mice with intestinal epithelial-selective ßPix deletion [ßPixflox/flox/Tg(villin-Cre); Arhgef7 CKO mice]. Using Arhgef7 conditional knockout (CKO) and control mice, we investigated the consequences of ßPix deficiency in vivo on intestinal epithelial and enteroid development, dextran sodium sulfate-induced mucosal injury, and gut permeability. In normal human and murine intestines, we observed diffuse cytoplasmic and moderate nuclear ßPix immunostaining in enterocytes. Arhgef7 CKO mice were viable and fertile, with normal gross intestinal architecture but reduced small intestinal villus height, villus-to-crypt ratio, and goblet cells; small intestinal crypt cells had reduced Ki67 staining, compatible with impaired cell proliferation. Enteroids derived from control mouse small intestine were viable for more than 20 passages, but those from Arhgef7 CKO mice did not survive beyond 24 h despite addition of Wnt proteins or conditioned media from normal enteroids. Adding a Rho kinase (ROCK) inhibitor partially rescued CKO enteroid development. Compared with littermate control mice, dextran sodium sulfate-treated ßPix-deficient mice lost more weight and had greater impairment of intestinal barrier function, and more severe colonic mucosal injury. These findings reveal ßPix expression is important for enterocyte development, intestinal homeostasis, and resistance to toxic injury.NEW & NOTEWORTHY To explore the role of ßPix, a guanine nucleotide exchange factor encoded by ARHGEF7, in intestinal development and physiology, we created mice with intestinal epithelial cell Arhgef7/ßPix deficiency. We found ßPix essential for normal small intestinal epithelial cell proliferation, villus development, and mucosal resistance to injury. Moreover, Rho kinase signaling mediated developmental arrest observed in enteroids derived from ßPix-deficient small intestinal crypts. Our studies provide insights into the role Arhgef7/ßPix plays in intestinal epithelial homeostasis.


Assuntos
Proliferação de Células , Colite/metabolismo , Colo/metabolismo , Enterócitos/metabolismo , Mucosa Intestinal/metabolismo , Microvilosidades/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/deficiência , Animais , Células Cultivadas , Colite/induzido quimicamente , Colite/genética , Colite/patologia , Colo/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Enterócitos/patologia , Feminino , Deleção de Genes , Humanos , Mucosa Intestinal/patologia , Intestino Delgado/metabolismo , Intestino Delgado/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microvilosidades/patologia , Organoides , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Transdução de Sinais , Técnicas de Cultura de Tecidos , Quinases Associadas a rho/metabolismo
9.
Int J Mol Sci ; 22(2)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33450835

RESUMO

Despite great advances in our understanding of the pathobiology of colorectal cancer and the genetic and environmental factors that mitigate its onset and progression, a paucity of effective treatments persists. The five-year survival for advanced, stage IV disease remains substantially less than 20%. This review examines a relatively untapped reservoir of potential therapies to target muscarinic receptor expression, activation, and signaling in colorectal cancer. Most colorectal cancers overexpress M3 muscarinic receptors (M3R), and both in vitro and in vivo studies have shown that activating these receptors stimulates cellular programs that result in colon cancer growth, survival, and spread. In vivo studies using mouse models of intestinal neoplasia have shown that using either genetic or pharmacological approaches to block M3R expression and activation, respectively, attenuates the development and progression of colon cancer. Moreover, both in vitro and in vivo studies have shown that blocking the activity of matrix metalloproteinases (MMPs) that are induced selectively by M3R activation, i.e., MMP1 and MMP7, also impedes colon cancer growth and progression. Nonetheless, the widespread expression of muscarinic receptors and MMPs and their importance for many cellular functions raises important concerns about off-target effects and the safety of employing similar strategies in humans. As we highlight in this review, highly selective approaches can overcome these obstacles and permit clinicians to exploit the reliance of colon cancer cells on muscarinic receptors and their downstream signal transduction pathways for therapeutic purposes.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/metabolismo , Receptores Muscarínicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos/uso terapêutico , Biomarcadores , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/patologia , Gerenciamento Clínico , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Inibidores de Metaloproteinases de Matriz/farmacologia , Inibidores de Metaloproteinases de Matriz/uso terapêutico , Metaloproteinases da Matriz/metabolismo , Terapia de Alvo Molecular , Agonistas Muscarínicos/farmacologia , Agonistas Muscarínicos/uso terapêutico , Receptor Muscarínico M3/genética , Receptor Muscarínico M3/metabolismo , Receptores Muscarínicos/classificação , Receptores Muscarínicos/genética
10.
Int J Mol Sci ; 22(23)2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34884958

RESUMO

Cancers arising from gastrointestinal epithelial cells are common, aggressive, and difficult to treat. Progress in this area resulted from recognizing that the biological behavior of these cancers is highly dependent on bioactive molecules released by neurocrine, paracrine, and autocrine mechanisms within the tumor microenvironment. For many decades after its discovery as a neurotransmitter, acetylcholine was thought to be synthesized and released uniquely from neurons and considered the sole physiological ligand for muscarinic receptor subtypes, which were believed to have similar or redundant actions. In the intervening years, we learned this former dogma is not tenable. (1) Acetylcholine is not produced and released only by neurons. The cellular machinery required to synthesize and release acetylcholine is present in immune, cancer, and other cells, as well as in lower organisms (e.g., bacteria) that inhabit the gut. (2) Acetylcholine is not the sole physiological activator of muscarinic receptors. For example, selected bile acids can modulate muscarinic receptor function. (3) Muscarinic receptor subtypes anticipated to have overlapping functions based on similar G protein coupling and downstream signaling may have unexpectedly diverse actions. Here, we review the relevant research findings supporting these conclusions and discuss how the complexity of muscarinic receptor biology impacts health and disease, focusing on their role in the initiation and progression of gastric, pancreatic, and colon cancers.


Assuntos
Neoplasias do Colo/metabolismo , Neoplasias Pancreáticas/metabolismo , Receptores Muscarínicos/metabolismo , Neoplasias Gástricas/metabolismo , Acetilcolina/metabolismo , Ácidos e Sais Biliares/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Transdução de Sinais , Microambiente Tumoral
11.
J Biol Chem ; 294(21): 8529-8542, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-30967475

RESUMO

The farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily of bile acid-activated transcription factors and an important regulator of cell proliferation, apoptosis, and Wnt signaling. Down-regulated expression of FXR plays an important role in some malignancies such as colon cancer, and in rodent models of intestinal neoplasia, FXR knockout increases the size and number of colon tumors. These previous observations implicate FXR as a tumor suppressor, but the underlying molecular mechanisms are unclear. Employing complementary experimental approaches and using human colon cancer specimens, human and murine colon cancer cell lines, and FXR transgenic mice, here we identified an additional, potentially important role for FXR. We observed an inverse relationship between the expression of FXR and matrix metalloproteinase-7 (MMP7), a collagenase and signaling molecule consistently associated with colon cancer progression. We noted that FXR gene ablation increases MMP7 expression. Consistent with this finding, FXR overexpression and a dominant-negative FXR mutation reduced and augmented, respectively, MMP7 expression. Of note, MMP7 was the only MMP gene family member whose expression was down-regulated after FXR activation. FXR-mediated regulation of MMP7 transcription did not require heterodimerization with the retinoid X receptor (RXR), indicating that FXR represses MMP7 expression independently of RXR. Last, we uncovered that FXR suppresses MMP7 transcription by binding to a negative FXR-responsive element in the 5' MMP7 promoter, an event that inhibited colon cancer cell proliferation and invasion. These findings identify the FXR-MMP7 axis as a potential therapeutic target for managing colon cancer.


Assuntos
Neoplasias do Colo/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Metaloproteinase 7 da Matriz/biossíntese , Proteínas de Neoplasias/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Células CACO-2 , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Células HCT116 , Células HT29 , Humanos , Metaloproteinase 7 da Matriz/genética , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/genética , Receptores Citoplasmáticos e Nucleares/genética , Elementos de Resposta
13.
Pharm Res ; 37(2): 26, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31907698

RESUMO

PURPOSE: The bile salt export pump (BSEP), a key player in hepatic bile acid clearance, has been the center of research on drug-induced cholestasis. However, such studies focus primarily on the direct inhibition of BSEP, often overlooking the potential impact of transcriptional repression. This work aims to explore the disruption of bile acid efflux caused by drug-induced BSEP repression. METHODS: BSEP activity was analyzed in human primary hepatocytes (HPH) using a traditional biliary-clearance experiment and a modified efflux assay, which includes a 72-h pretreatment prior to efflux measurement. Relative mRNA and protein expressions were examined by RT-PCR and Western blotting, respectively. RESULTS: Metformin concentration-dependently repressed BSEP expression in HPH. Although metformin did not directly inhibit BSEP activity, longer metformin exposure reduced BSEP transport function in HPH by down-regulating BSEP expression. BSEP repression by metformin was found to be AMP-activated protein kinase-independent. Additional screening of 10 reported cholestatic non-BSEP inhibitors revealed that the anti-cancer drug tamoxifen also markedly repressed BSEP expression and reduced BSEP activity in HPH. CONCLUSIONS: Repression of BSEP alone is sufficient to disrupt hepatic bile acid efflux. Metformin and tamoxifen appear to be prototypes of a class of BSEP repressors that may cause drug-induced cholestasis through gene repression instead of direct BSEP inhibition.


Assuntos
Ácidos e Sais Biliares/metabolismo , Bile/efeitos dos fármacos , Metformina/efeitos adversos , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Bile/metabolismo , Transporte Biológico/efeitos dos fármacos , Linhagem Celular , Colestase/induzido quimicamente , Colestase/metabolismo , Hepatócitos/efeitos dos fármacos , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo
14.
MAGMA ; 32(1): 163-171, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30387017

RESUMO

In up to 50% of people diagnosed with a common ailment, diarrhea-predominant irritable bowel syndrome, diarrhea results from excess spillage of bile acids into the colon-data emerging over the past decade identified deficient release of a gut hormone, fibroblast growth factor 19 (FGF19), and a consequent lack of feedback suppression of bile acid synthesis as the most common cause. 75Selenium homotaurocholic acid (SeHCAT) testing, considered the most sensitive and specific means of identifying individuals with bile acid diarrhea, is unavailable in many countries, including the United States. Other than SeHCAT, tests to diagnose bile acid diarrhea are cumbersome, non-specific, or insufficiently validated; clinicians commonly rely on a therapeutic trial of bile acid binders. Here, we review bile acid synthesis and transport, the pathogenesis of bile acid diarrhea, the reasons clinicians frequently overlook this disorder, including the limitations of currently available tests, and our efforts to develop a novel 19F magnetic resonance imaging (MRI)-based diagnostic approach. We created 19F-labeled bile acid analogues whose in vitro and in vivo transport mimics that of naturally occurring bile acids. Using dual 1H/19F MRI of the gallbladders of live mice fed 19F-labeled bile acid analogues, we were able to differentiate wild-type mice from strains deficient in intestinal expression of a key bile acid transporter, the apical sodium-dependent bile acid transporter (ASBT), or FGF15, the mouse homologue of FGF19. In addition to reviewing our development of 19F-labeled bile acid analogue-MRI to diagnose bile acid diarrhea, we discuss challenges to its clinical implementation. A major limitation is the paucity of clinical MRI facilities equipped with the appropriate coil and software needed to detect 19F signals.


Assuntos
Ácidos e Sais Biliares/química , Diarreia/diagnóstico por imagem , Imagem por Ressonância Magnética de Flúor-19 , Animais , Transporte Biológico , Testes Diagnósticos de Rotina , Feminino , Fatores de Crescimento de Fibroblastos/metabolismo , Vesícula Biliar/efeitos dos fármacos , Humanos , Intestinos , Masculino , Teste de Materiais , Camundongos , Camundongos Knockout , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Radioisótopos de Selênio/química , Simportadores/metabolismo , Ácido Taurocólico/química
15.
Gastroenterology ; 162(7): 1847-1848, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35248536
17.
Am J Gastroenterol ; 118(7): 1118, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36716435
18.
Mol Pharm ; 15(11): 4827-4834, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30247920

RESUMO

Our work has focused on defining the utility of fluorine (19F)-labeled bile acid analogues and magnetic resonance imaging (MRI) to identify altered bile acid transport in vivo. In the current study, we explored the ability of this approach to differentiate fibroblast growth factor-15 (FGF15)-deficient from wild-type (WT) mice, a potential diagnostic test for bile acid diarrhea, a commonly misdiagnosed disorder. FGF15 is the murine homologue of human FGF19, an intestinal hormone whose deficiency is an underappreciated cause of bile acid diarrhea. In a pilot and three subsequent pharmacokinetic studies, we treated mice with two 19F-labeled bile acid analogues, CA-lys-TFA and CA-sar-TFMA. After oral dosing, we quantified 19F-labeled bile acid analogue levels in the gallbladder, liver, small and large intestine, and plasma using liquid chromatography mass spectrometry (LC-MS/MS). Both 19F bile acid analogues concentrated in the gallbladders of FGF15-deficient and WT mice, attaining peak concentrations at approximately 8.5 h after oral dosing. However, analogue levels in gallbladders of FGF15-deficient mice were several-fold less compared to those in WT mice. Live-animal 19F MRI provided agreement with our LC-MS/MS-based measures; we detected robust CA-lys-TFA 19F signals in gallbladders of WT mice but no signals in FGF15-deficient mice. Our finding that 19F MRI differentiates FGF15-deficient from WT mice provides additional proof-of-concept for the development of 19F bile acid analogues and 19F MRI as a clinical test to diagnose bile acid diarrhea due to FGF19 deficiency and other disorders.


Assuntos
Ácidos e Sais Biliares/farmacocinética , Diarreia/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Imagem Molecular/métodos , Sondas Moleculares/farmacocinética , Animais , Ácidos e Sais Biliares/administração & dosagem , Ácidos e Sais Biliares/química , Diarreia/genética , Modelos Animais de Doenças , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Flúor/química , Vesícula Biliar/diagnóstico por imagem , Vesícula Biliar/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Sondas Moleculares/administração & dosagem , Sondas Moleculares/química , Distribuição Tecidual
19.
Hepatol Res ; 48(3): E68-E77, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28635176

RESUMO

AIM: Hepatic innervation represents a potentially underestimated regulator of liver function and regeneration. The muscarinic 3 receptor (M3 -R) is the primary cholangiocyte receptor for the afferent parasympathetic innervation of bile ducts. We aimed to determine the specific role of the M3 -R in bile formation and models for cholestatic liver disease in mice. METHODS: We compared bile flow and composition in M3 -R knock-out mice (M3 -R-/- ) and wild type littermates (WT). Furthermore, we compared liver inury of M3 -R-/- and WT mice after 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) feeding, a well-characterized preclinical model of cholestatic liver disease. To analyze the possible role of the M3 -R as a therapeutic target, we treated 4-week-old Mdr2-/- mice, a preclinical model for sclerosing cholangitis, with the M3 -R agonist bethanechol for 4 weeks. RESULTS: M3 -R-/- mice showed significantly reduced bile flow compared to WT mice, most likely due to decreased biliary HCO3- secretion. However, even aged M3 -R-/- mice did not spontaneously develop liver injury or cholestasis. Challenging M3 -R-/- and WT littermates with DDC feeding showed substantially aggravated liver injury in M3 -R-/- mice. After 4 weeks bethanechol treatment, Mdr2-/- mice showed less liver injury compared to controls. CONCLUSION: Our experimental findings suggest that M3 -R-signalling significantly influences bile formation. Loss of the M3 -R increases susceptibility to cholestatic injury in DDC-fed mice. Since treatment of Mdr2-/- mice with a M3 -R agonist decreases liver injury, M3-R signaling may represent a therapeutic target in specific cholangiopathies.

20.
Dig Dis Sci ; 63(5): 1123-1138, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29572615

RESUMO

Colorectal cancer (CRC) accounts for ~9% of all cancers in the Veteran population, a fact which has focused a great deal of the attention of the VA's research and development efforts. A field-based meeting of CRC experts was convened to discuss both challenges and opportunities in precision medicine for CRC. This group, designated as the VA Colorectal Cancer Cell-genomics Consortium (VA4C), discussed advances in CRC biology, biomarkers, and imaging for early detection and prevention. There was also a discussion of precision treatment involving fluorescence-guided surgery, targeted chemotherapies and immunotherapies, and personalized cancer treatment approaches. The overarching goal was to identify modalities that might ultimately lead to personalized cancer diagnosis and treatment. This review summarizes the findings of this VA field-based meeting, in which much of the current knowledge on CRC prescreening and treatment was discussed. It was concluded that there is a need and an opportunity to identify new targets for both the prevention of CRC and the development of effective therapies for advanced disease. Also, developing methods integrating genomic testing with tumoroid-based clinical drug response might lead to more accurate diagnosis and prognostication and more effective personalized treatment of CRC.


Assuntos
Neoplasias Colorretais , Medicina de Precisão/métodos , Saúde dos Veteranos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/terapia , Terapia Combinada , Detecção Precoce de Câncer/métodos , Humanos , Prognóstico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa