Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Am Chem Soc ; 138(37): 12202-10, 2016 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-27585246

RESUMO

A de novo topology of virus-like assembly is reported. The design is a trifaceted coiled-coil peptide helix, which self-assembles into ultrasmall, monodisperse, anionic virus-like shells that encapsulate and transfer both RNA and DNA into human cells. Unlike existing artificial systems, these shells share the same physical characteristics of viruses being anionic, nonaggregating, abundant, hollow, and uniform in size, while effectively mediating gene silencing and transgene expression. These are the smallest virus-like structures reported to date, both synthetic and native, with the ability to adapt and transfer small and large nucleic acids. The design thus offers a promising solution for engineering bespoke artificial viruses with desired functions.


Assuntos
Peptídeos/síntese química , Vírion/química , Sequência de Aminoácidos , Fenômenos Biofísicos , Sobrevivência Celular , Dicroísmo Circular , Desenho Assistido por Computador , Microscopia Crioeletrônica , HIV-1 , Células HeLa , Humanos , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Peptídeos/química , Dobramento de Proteína , Estrutura Secundária de Proteína
2.
Proc Natl Acad Sci U S A ; 110(22): 8918-23, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23671080

RESUMO

Antimicrobial peptides are postulated to disrupt microbial phospholipid membranes. The prevailing molecular model is based on the formation of stable or transient pores although the direct observation of the fundamental processes is lacking. By combining rational peptide design with topographical (atomic force microscopy) and chemical (nanoscale secondary ion mass spectrometry) imaging on the same samples, we show that pores formed by antimicrobial peptides in supported lipid bilayers are not necessarily limited to a particular diameter, nor they are transient, but can expand laterally at the nano-to-micrometer scale to the point of complete membrane disintegration. The results offer a mechanistic basis for membrane poration as a generic physicochemical process of cooperative and continuous peptide recruitment in the available phospholipid matrix.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Bicamadas Lipídicas/química , Nanotecnologia/métodos , Fosfolipídeos/metabolismo , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/genética , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Fosfolipídeos/química , Engenharia de Proteínas , Espectrometria de Massa de Íon Secundário
3.
Phys Chem Chem Phys ; 17(24): 15608-14, 2015 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-25966444

RESUMO

Host defence peptides (HDPs) are effector components of innate immunity that provide defence against pathogens. These are small-to-medium sized proteins which fold into amphipathic conformations toxic to microbial membranes. Here we explore the concept of supramolecular amphipathicity for probing antimicrobial propensity of HDPs using elementary HDP-like amphiphiles. Such amphiphiles are individually inactive, but when ordered into microscopic micellar assemblies, respond to membrane binding according to the orthogonal type of their primary structure. The study demonstrates that inducible supramolecular amphipathicity can discriminate against bacterial growth and colonisation thereby offering a physico-chemical rationale for tuneable targeting of biological membranes.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Escherichia coli/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Animais , Antibacterianos/síntese química , Peptídeos Catiônicos Antimicrobianos/síntese química , Bovinos , Relação Dose-Resposta a Droga , Eritrócitos/efeitos dos fármacos , Escherichia coli/citologia , Escherichia coli/crescimento & desenvolvimento , Hemólise/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/citologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Staphylococcus aureus/citologia , Staphylococcus aureus/crescimento & desenvolvimento , Relação Estrutura-Atividade
4.
J Biol Chem ; 288(28): 20162-72, 2013 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-23737519

RESUMO

Antimicrobial or host defense peptides are innate immune regulators found in all multicellular organisms. Many of them fold into membrane-bound α-helices and function by causing cell wall disruption in microorganisms. Herein we probe the possibility and functional implications of antimicrobial antagonism mediated by complementary coiled-coil interactions between antimicrobial peptides and de novo designed antagonists: anti-antimicrobial peptides. Using sequences from native helical families such as cathelicidins, cecropins, and magainins we demonstrate that designed antagonists can co-fold with antimicrobial peptides into functionally inert helical oligomers. The properties and function of the resulting assemblies were studied in solution, membrane environments, and in bacterial culture by a combination of chiroptical and solid-state NMR spectroscopies, microscopy, bioassays, and molecular dynamics simulations. The findings offer a molecular rationale for anti-antimicrobial responses with potential implications for antimicrobial resistance.


Assuntos
Peptídeos Catiônicos Antimicrobianos/antagonistas & inibidores , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos/química , Peptídeos/farmacologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Catelicidinas/antagonistas & inibidores , Catelicidinas/química , Catelicidinas/metabolismo , Cecropinas/antagonistas & inibidores , Cecropinas/química , Cecropinas/metabolismo , Dicroísmo Circular , Relação Dose-Resposta a Droga , Hemólise/efeitos dos fármacos , Humanos , Magaininas/antagonistas & inibidores , Magaininas/química , Magaininas/metabolismo , Testes de Sensibilidade Microbiana , Modelos Moleculares , Simulação de Dinâmica Molecular , Peptídeos/metabolismo , Ligação Proteica , Dobramento de Proteína , Multimerização Proteica , Estrutura Secundária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier
5.
J Am Chem Soc ; 136(22): 7889-98, 2014 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-24825365

RESUMO

An ability to construct biological matter from the molecule up holds promise for applications ranging from smart materials to integrated biophysical models for synthetic biology. Biomolecular self-assembly is an efficient strategy for biomaterial construction which can be programmed to support desired function. A challenge remains in replicating the strategy synthetically, that is at will, and differentially, that is for a specific function at a given length scale. Here we introduce a self-assembly topology enabling a net-like architectural mimetic of native extracellular matrices capable of differential responses to cell adhesion--enhanced mammalian cell attachment and proliferation, and enhanced resistance to bacterial colonization--at the native sub-millimeter length scales. The biological performance of such protein micro-nets directly correlates with their morphological and chemical properties, offering thus an application model for differential extracellular matrices.


Assuntos
Proteínas da Matriz Extracelular/química , Proteínas da Matriz Extracelular/síntese química , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Adesão Celular , Proliferação de Células , Ciclização , Citoesqueleto/química , Citoesqueleto/ultraestrutura , Fibroblastos/metabolismo , Hemólise/efeitos dos fármacos , Humanos , Técnicas In Vitro , Lipossomos , Modelos Moleculares , Peptídeos/síntese química , Peptídeos/química , Conformação Proteica , Dobramento de Proteína
6.
Mater Today Bio ; 22: 100786, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37692377

RESUMO

Extracellular matrix type 0 is reported. The matrix is developed from a jellyfish collagen predating mammalian forms by over 0.5 billion years. With its ancient lineage, compositional simplicity, and resemblance to multiple collagen types, the matrix is referred to as the extracellular matrix type 0. Here we validate the matrix describing its physicochemical and biological properties and present it as a versatile, minimalist biomaterial underpinning a pipeline of commercialised products under the collective name of JellaGelTM. We describe an extensive body of evidence for folding and assembly of the matrix in comparison to mammalian matrices, such as bovine collagen, and its use to support cell growth and development in comparison to known tissue-derived products, such as Matrigel™. We apply the matrix to co-culture human astrocytes and cortical neurons derived from induced pluripotent stem cells and visualise neuron firing synchronicity with correlations indicative of a homogenous extracellular material in contrast to the performance of heterogenous commercial matrices. We prove the ability of the matrix to induce spheroid formation and support the 3D culture of human immortalised, primary, and mesenchymal stem cells. We conclude that the matrix offers an optimal solution for systemic evaluations of cell-matrix biology. It effectively combines the exploitable properties of mammalian tissue extracts or top-down matrices, such as biocompatibility, with the advantages of synthetic or bottom-up matrices, such as compositional control, while avoiding the drawbacks of the two types, such as biological and design heterogeneity, thereby providing a unique bridging capability of a stem extracellular matrix.

7.
J Biol Chem ; 286(28): 25016-26, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21592960

RESUMO

Human chorionic gonadotropin (hCG) is an important biomarker in pregnancy and oncology, where it is routinely detected and quantified by specific immunoassays. Intelligent epitope selection is essential to achieving the required assay performance. We present binding affinity measurements demonstrating that a typical ß3-loop-specific monoclonal antibody (8G5) is highly selective in competitive immunoassays and distinguishes between hCGß(66-80) and the closely related luteinizing hormone (LH) fragment LHß(86-100), which differ only by a single amino acid residue. A combination of optical spectroscopic measurements and atomistic computer simulations on these free peptides reveals differences in turn type stabilized by specific hydrogen bonding motifs. We propose that these structural differences are the basis for the observed selectivity in the full protein.


Assuntos
Anticorpos Monoclonais Murinos/química , Gonadotropina Coriônica Humana Subunidade beta/química , Simulação por Computador , Epitopos/química , Peptídeos/química , Animais , Anticorpos Monoclonais Murinos/genética , Gonadotropina Coriônica Humana Subunidade beta/genética , Epitopos/genética , Feminino , Humanos , Imunoensaio , Camundongos , Peptídeos/genética , Gravidez , Estrutura Secundária de Proteína , Relação Estrutura-Atividade
8.
Phys Chem Chem Phys ; 14(3): 1277-85, 2012 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-22139400

RESUMO

Membrane-mediated structural modulation in two short fragments of the human HIV-1 envelope protein gp41 is demonstrated. Derived from the C-terminal membrane proximal external (MPE) and N-terminal fusion peptide proximal (FPP) regions, these peptides are widely separated in the primary sequence but form tertiary contacts during the intermediate (hemifusion) phase of HIV infection. The structural perturbations observed at the membrane interface offer evidence of rudimentary regulatory mechanisms operating in the free peptides which may be relevant in the biological system. No such regulatory phenomena were observed for the individual peptides in a membrane environment or between the peptides in aqueous solutions. Structure determination is made using a combination of circular and linear dichroism spectroscopy (supported by calorimetric measurements) and molecular dynamics simulations. Specifically, we show that these peptides interact locally without the conformational support of helical heptad repeat regions in native gp41 and that the modulation is not mutual with the FPP peptide operating as a primary regulator of the MPE-FPP interactions in the hemifusion phase.


Assuntos
Proteína gp41 do Envelope de HIV/química , Membranas Artificiais , Dicroísmo Circular , Proteína gp41 do Envelope de HIV/metabolismo , HIV-1/metabolismo , Humanos , Simulação de Dinâmica Molecular , Peptídeos/síntese química , Peptídeos/química , Peptídeos/metabolismo , Dobramento de Proteína
9.
Eur Biophys J ; 40(3): 339-45, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21229353

RESUMO

The biological activity of therapeutic proteins is strongly dependent on the stability of their folded state, which can easily be compromised by degradation. Oxidation is one of the most common causes of degradation and is typically associated with impairment of the native protein structure. Methionine residues stand out as particularly susceptible to oxidation by reactive oxygen intermediates even under mild conditions. Consequently, methionine oxidation has profound effects on protein activity up to the point of adverse biological responses. Of immediate importance therefore is finding affordable approaches for rapid detection of methionine oxidation before any substantial structural changes can ensue. Herein we report that vibrational bands at 1,044 and 1,113 cm⁻¹ in the mid-infrared region can serve as characteristic markers of methionine oxidation in oxidatively stressed protein therapeutics, monoclonal antibodies (IgG1 and its antigen-binding fragment). Such Fourier-transform infrared (FTIR) markers underpin rapid detection assays and hold particular promise for correlation of methionine oxidation with protein structure and function.


Assuntos
Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/química , Imunoglobulina G/química , Metionina/análogos & derivados , Metionina/química , Estresse Oxidativo , Espectroscopia de Infravermelho com Transformada de Fourier , Biomarcadores/análise , Biomarcadores/química , Dicroísmo Circular/métodos , Fragmentos Fab das Imunoglobulinas/análise , Fragmentos Fab das Imunoglobulinas/uso terapêutico , Fragmentos Fc das Imunoglobulinas/análise , Fragmentos Fc das Imunoglobulinas/uso terapêutico , Imunoglobulina G/análise , Imunoglobulina G/uso terapêutico , Metionina/análise , Oxirredução , Relação Quantitativa Estrutura-Atividade , Espectrometria de Fluorescência
10.
ACS Nano ; 15(6): 9679-9689, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-33885289

RESUMO

Disruption of cell membranes is a fundamental host defense response found in virtually all forms of life. The molecular mechanisms vary but generally lead to energetically favored circular nanopores. Here, we report an elaborate fractal rupture pattern induced by a single side-chain mutation in ultrashort (8-11-mers) helical peptides, which otherwise form transmembrane pores. In contrast to known mechanisms, this mode of membrane disruption is restricted to the upper leaflet of the bilayer where it exhibits propagating fronts of peptide-lipid interfaces that are strikingly similar to viscous instabilities in fluid flow. The two distinct disruption modes, pores and fractal patterns, are both strongly antimicrobial, but only the fractal rupture is nonhemolytic. The results offer wide implications for elucidating differential membrane targeting phenomena defined at the nanoscale.


Assuntos
Anti-Infecciosos , Nanoporos , Fractais , Bicamadas Lipídicas , Mutação
11.
iScience ; 23(8): 101423, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32795916

RESUMO

Bacteriocins are a distinct family of antimicrobial proteins postulated to porate bacterial membranes. However, direct experimental evidence of pore formation by these proteins is lacking. Here we report a multi-mode poration mechanism induced by four-helix bacteriocins, epidermicin NI01 and aureocin A53. Using a combination of crystallography, spectroscopy, bioassays, and nanoscale imaging, we established that individual two-helix segments of epidermicin retain antibacterial activity but each of these segments adopts a particular poration mode. In the intact protein these segments act synergistically to balance out antibacterial and hemolytic activities. The study sets a precedent of multi-mode membrane disruption advancing the current understanding of structure-activity relationships in pore-forming proteins.

12.
Chirality ; 20(9): 1029-38, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18506835

RESUMO

To obtain accurate and consistent measurements from circular dichroism (CD) instruments over time and from different laboratories, it is important that they are properly calibrated. The characteristics of the available reference materials are not ideal to ensure proper calibration as they typically only give peaks in one or two spectral regions, and often have issues concerning purity and stability. Currently either camphor sulfonic acid or ammonium camphor sulfonate are used. The latter can be an unstable, slightly hygroscopic secondary standard compound with only one characterized CD band. The former is the very hygroscopic primary standard for which only one enantiomer is readily available. We have synthesized a new reference material for CD, Na[Co(EDDS)].H(2)O (EDDS = N,N-ethylenediaminedisuccinic acid) which addresses these problems. It is extremely stable and available in both enantiomeric forms. The CD spectrum of Na[Co(EDDS)].H(2)O has nine distinct peaks between 180 and 599 nm. It thus fulfils the principal requirements for CD calibration chemical standards and has the potential to be used to ensure good practice in the measurement of CD data, providing two spectra of equal magnitude and opposite sign for a given concentration and path length. We have carried out an interlaboratory comparison using this material and show how it can be used to improve CD comparability between laboratories. A fitting algorithm has been developed to assess CD spectropolarimeter performance between 750 and 178 nm. This could be the basis of a formal quality control process once criteria for performance have been decided.


Assuntos
Dicroísmo Circular/métodos , Espectrofotometria Ultravioleta/métodos , Etilenodiaminas/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Succinatos/química
13.
Sci Rep ; 8(1): 14926, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30297841

RESUMO

The spread of antimicrobial resistance stimulates discovery strategies that place emphasis on mechanisms circumventing the drawbacks of traditional antibiotics and on agents that hit multiple targets. Host defense peptides (HDPs) are promising candidates in this regard. Here we demonstrate that a given HDP sequence intrinsically encodes for tuneable mechanisms of membrane disruption. Using an archetypal HDP (cecropin B) we show that subtle structural alterations convert antimicrobial mechanisms from native carpet-like scenarios to poration and non-porating membrane exfoliation. Such distinct mechanisms, studied using low- and high-resolution spectroscopy, nanoscale imaging and molecular dynamics simulations, all maintain strong antimicrobial effects, albeit with diminished activity against pathogens resistant to HDPs. The strategy offers an effective search paradigm for the sequence probing of discrete antimicrobial mechanisms within a single HDP.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Proteínas de Insetos/química , Proteínas de Insetos/farmacologia , Bicamadas Lipídicas/metabolismo , Mariposas/química , Sequência de Aminoácidos , Animais , Infecções Bacterianas/tratamento farmacológico , Descoberta de Drogas , Farmacorresistência Bacteriana , Humanos , Modelos Moleculares , Fosfolipídeos/metabolismo
14.
Sci Rep ; 8(1): 17266, 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-30451943

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

15.
Chem Sci ; 8(2): 1105-1115, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28451250

RESUMO

The spread of bacterial resistance to traditional antibiotics continues to stimulate the search for alternative antimicrobial strategies. All forms of life, from bacteria to humans, are postulated to rely on a fundamental host defense mechanism, which exploits the formation of open pores in microbial phospholipid bilayers. Here we predict that transmembrane poration is not necessary for antimicrobial activity and reveal a distinct poration mechanism that targets the outer leaflet of phospholipid bilayers. Using a combination of molecular-scale and real-time imaging, spectroscopy and spectrometry approaches, we introduce a structural motif with a universal insertion mode in reconstituted membranes and live bacteria. We demonstrate that this motif rapidly assembles into monolayer pits that coalesce during progressive membrane exfoliation, leading to bacterial cell death within minutes. The findings offer a new physical basis for designing effective antibiotics.

16.
Sci Rep ; 5: 9292, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25786833

RESUMO

Lipopolyplexes are of widespread interest for gene therapy due to their multifunctionality and high transfection efficiencies. Here we compared the biological and biophysical properties of a lipopolyplex formulation with its lipoplex and polyplex equivalents to assess the role of the lipid and peptide components in the formation and function of the lipopolyplex formulation. We show that peptide efficiently packaged plasmid DNA forming spherical, highly cationic nanocomplexes that are taken up efficiently by cells. However, transgene expression was poor, most likely due to endosomal degradation since the polyplex lacks membrane trafficking properties. In addition the strong peptide-DNA interaction may prevent plasmid release from the complex and so limit plasmid DNA availability. Lipid/DNA lipoplexes, on the other hand, produced aggregated masses that showed poorer cellular uptake than the polyplex but contrastingly greater levels of transgene expression. This may be due to the greater ability of lipoplexes relative to polyplexes to promote endosomal escape. Lipopolyplex formulations formed spherical, cationic nanocomplexes with efficient cellular uptake and significantly enhanced transfection efficiency. The lipopolyplexes combined the optimal features of lipoplexes and polyplexes showing optimal cell uptake, endosomal escape and availability of plasmid for transcription, thus explaining the synergistic increase in transfection efficiency.


Assuntos
Lipossomos , Peptídeos , Transfecção/métodos , Linhagem Celular , DNA/química , Expressão Gênica , Técnicas de Transferência de Genes , Genes Reporter , Humanos , Lipossomos/química , Nanopartículas/administração & dosagem , Nanopartículas/química , Nanopartículas/ultraestrutura , Peptídeos/química , Polímeros/química
17.
Chem Commun (Camb) ; 47(32): 9045-7, 2011 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-21766130

RESUMO

A generic peptide sequence for gene delivery is described. The sequence penetrates eukaryotic cells and promotes active DNA transport into mammalian cells (EGFP positive) by undergoing differential membrane-induced folding, which renders it both endosomolytic and antibacterial.


Assuntos
DNA/administração & dosagem , Técnicas de Transferência de Genes , Peptídeos/química , Peptídeos/metabolismo , Sequência de Aminoácidos , Antibacterianos/química , Antibacterianos/metabolismo , Permeabilidade da Membrana Celular , Células Cultivadas , DNA/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Proteínas de Fluorescência Verde/genética , Humanos , Dados de Sequência Molecular
18.
Mol Biosyst ; 6(11): 2214-7, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20730239

RESUMO

Intensified efforts to decipher the origin of disease at the molecular level stimulate the emergence of more efficient proteomic technologies. To complement this, attempts are being made to identify new predictive biomarkers for building more reliable biomarker patterns. As biomarker research gathers pace an immediate interest becomes focused on platforms, which although based on mainstream approaches, are more amenable to specialist tasks. Particularly relevant this is for disease-specific biomarkers, which are present at very low concentrations in multicomponent biological fluids and require depletion protocols enabling their separation from high-abundance components. In this report, we describe a new strategy allowing the rapid detection of target protein biomarkers by MALDI-ToF mass spectrometry. The approach relies on selective sequestering of target proteins from complex media by engineered microgels, which select proteins by their size (<30 kDa) and isoelectric points (protein pI <6.5). Subsequently, biomarker-loaded microgels are subjected to direct mass-spectrometric analysis without the need for preceding protein extraction. Exemplified by a natural protein-folding motif, coiled-coil, the monitoring of hierarchical folding-dependent macromolecular systems by the approach is also shown. The described strategy offers a general rationale for versatile platforms for high throughput proteomics and holds promise for proteome fingerprinting of biomolecular interactions.


Assuntos
Géis/química , Metacrilatos/química , Polietilenoglicóis/química , Proteínas/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Sequência de Aminoácidos , Biomarcadores/análise , Humanos , Dados de Sequência Molecular , Peptídeos/análise , Peptídeos/química , Proteínas/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa