Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-31383669

RESUMO

Mechanisms of magnesium homeostasis in Mycobacterium tuberculosis are poorly understood. Here, we describe the characterization of a pyrimidinetrione amide scaffold that disrupts magnesium homeostasis in the pathogen by direct binding to the CorA Mg2+/Co2+ transporter. Mutations in domains of CorA that are predicted to regulate the pore opening in response to Mg2+ ions conferred resistance to this scaffold. The pyrimidinetrione amides were cidal against the pathogen under both actively replicating and nonreplicating conditions in vitro and were efficacious against the organism during macrophage infection. However, the compound lacked efficacy in infected mice, possibly due to limited exposure. Our results indicate that inhibition of Mg2+ homeostasis by CorA is an attractive target for tuberculosis drug discovery and encourage identification of improved CorA inhibitors.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Magnésio/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , Antibacterianos/química , Antibacterianos/farmacocinética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Transporte de Cátions/genética , Homeostase/efeitos dos fármacos , Pirimidinas/química , Pirimidinas/farmacocinética , Pirimidinas/farmacologia , Relação Estrutura-Atividade
2.
Antimicrob Agents Chemother ; 58(11): 6962-5, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25155596

RESUMO

We report here a series of five chemically diverse scaffolds that have in vitro activities on replicating and hypoxic nonreplicating bacilli by targeting the respiratory bc1 complex in Mycobacterium tuberculosis in a strain-dependent manner. Deletion of the cytochrome bd oxidase generated a hypersusceptible mutant in which resistance was acquired by a mutation in qcrB. These results highlight the promiscuity of the bc1 complex and the risk of targeting energy metabolism with new drugs.


Assuntos
Antituberculosos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/tratamento farmacológico , Sítios de Ligação , Transporte de Elétrons/efeitos dos fármacos , Complexo IV da Cadeia de Transporte de Elétrons/genética , Metabolismo Energético/efeitos dos fármacos , Técnicas de Inativação de Genes , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Oxazinas/química , Estrutura Terciária de Proteína , Piridinas/farmacologia , Xantenos/química
4.
Cell Chem Biol ; 28(8): 1180-1191.e20, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-33765439

RESUMO

Tryptophan biosynthesis represents an important potential drug target for new anti-TB drugs. We identified a series of indole-4-carboxamides with potent antitubercular activity. In vitro, Mycobacterium tuberculosis (Mtb) acquired resistance to these compounds through three discrete mechanisms: (1) a decrease in drug metabolism via loss-of-function mutations in the amidase that hydrolyses these carboxamides, (2) an increased biosynthetic rate of tryptophan precursors via loss of allosteric feedback inhibition of anthranilate synthase (TrpE), and (3) mutation of tryptophan synthase (TrpAB) that decreased incorporation of 4-aminoindole into 4-aminotryptophan. Thus, these indole-4-carboxamides act as prodrugs of a tryptophan antimetabolite, 4-aminoindole.


Assuntos
Antituberculosos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Indóis/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Triptofano/biossíntese , Animais , Antituberculosos/química , Antituberculosos/metabolismo , Relação Dose-Resposta a Droga , Indóis/química , Indóis/metabolismo , Camundongos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Mycobacterium bovis/efeitos dos fármacos , Mycobacterium bovis/metabolismo , Mycobacterium tuberculosis/metabolismo
5.
ACS Infect Dis ; 7(2): 479-492, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33405882

RESUMO

Pyrazolo[1,5-a]pyrimidin-7(4H)-one was identified through high-throughput whole-cell screening as a potential antituberculosis lead. The core of this scaffold has been identified several times previously and has been associated with various modes of action against Mycobacterium tuberculosis (Mtb). We explored this scaffold through the synthesis of a focused library of analogues and identified key features of the pharmacophore while achieving substantial improvements in antitubercular activity. Our best hits had low cytotoxicity and showed promising activity against Mtb within macrophages. The mechanism of action of these compounds was not related to cell-wall biosynthesis, isoprene biosynthesis, or iron uptake as has been found for other compounds sharing this core structure. Resistance to these compounds was conferred by mutation of a flavin adenine dinucleotide (FAD)-dependent hydroxylase (Rv1751) that promoted compound catabolism by hydroxylation from molecular oxygen. Our results highlight the risks of chemical clustering without establishing mechanistic similarity of chemically related growth inhibitors.


Assuntos
Antituberculosos , Mycobacterium tuberculosis , Antituberculosos/farmacologia , Ensaios de Triagem em Larga Escala , Mycobacterium tuberculosis/genética , Relação Estrutura-Atividade
6.
ACS Infect Dis ; 7(6): 1666-1679, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33939919

RESUMO

Coenzyme A (CoA) is a ubiquitous cofactor present in all living cells and estimated to be required for up to 9% of intracellular enzymatic reactions. Mycobacterium tuberculosis (Mtb) relies on its own ability to biosynthesize CoA to meet the needs of the myriad enzymatic reactions that depend on this cofactor for activity. As such, the pathway to CoA biosynthesis is recognized as a potential source of novel tuberculosis drug targets. In prior work, we genetically validated CoaBC as a bactericidal drug target in Mtb in vitro and in vivo. Here, we describe the identification of compound 1f, a small molecule inhibitor of the 4'-phosphopantothenoyl-l-cysteine synthetase (PPCS; CoaB) domain of the bifunctional Mtb CoaBC, and show that this compound displays on-target activity in Mtb. Compound 1f was found to inhibit CoaBC uncompetitively with respect to 4'-phosphopantothenate, the substrate for the CoaB-catalyzed reaction. Furthermore, metabolomic profiling of wild-type Mtb H37Rv following exposure to compound 1f produced a signature consistent with perturbations in pantothenate and CoA biosynthesis. As the first report of a direct small molecule inhibitor of Mtb CoaBC displaying target-selective whole-cell activity, this study confirms the druggability of CoaBC and chemically validates this target.


Assuntos
Mycobacterium tuberculosis , Peptídeo Sintases/antagonistas & inibidores , Coenzima A , Cisteína/análogos & derivados , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Ácido Pantotênico/análogos & derivados , Peptídeo Sintases/genética
7.
J Med Chem ; 64(1): 719-740, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33395287

RESUMO

Phenotypic screening of a Medicines for Malaria Venture compound library against Mycobacterium tuberculosis (Mtb) identified a cluster of pan-active 2-pyrazolylpyrimidinones. The biology triage of these actives using various tool strains of Mtb suggested a novel mechanism of action. The compounds were bactericidal against replicating Mtb and retained potency against clinical isolates of Mtb. Although selected MmpL3 mutant strains of Mtb showed resistance to these compounds, there was no shift in the minimum inhibitory concentration (MIC) against a mmpL3 hypomorph, suggesting mutations in MmpL3 as a possible resistance mechanism for the compounds but not necessarily as the target. RNA transcriptional profiling and the checkerboard board 2D-MIC assay in the presence of varying concentrations of ferrous salt indicated perturbation of the Fe-homeostasis by the compounds. Structure-activity relationship studies identified potent compounds with good physicochemical properties and in vitro microsomal metabolic stability with moderate selectivity over cytotoxicity against mammalian cell lines.


Assuntos
Antituberculosos/química , Pirimidinonas/química , Animais , Antituberculosos/metabolismo , Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Meia-Vida , Humanos , Ferro/metabolismo , Masculino , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Microssomos/metabolismo , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/isolamento & purificação , Pirazóis/química , Pirimidinonas/metabolismo , Pirimidinonas/farmacologia , Ratos , Relação Estrutura-Atividade
8.
Nat Commun ; 12(1): 143, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420031

RESUMO

Coenzyme A (CoA) is a fundamental co-factor for all life, involved in numerous metabolic pathways and cellular processes, and its biosynthetic pathway has raised substantial interest as a drug target against multiple pathogens including Mycobacterium tuberculosis. The biosynthesis of CoA is performed in five steps, with the second and third steps being catalysed in the vast majority of prokaryotes, including M. tuberculosis, by a single bifunctional protein, CoaBC. Depletion of CoaBC was found to be bactericidal in M. tuberculosis. Here we report the first structure of a full-length CoaBC, from the model organism Mycobacterium smegmatis, describe how it is organised as a dodecamer and regulated by CoA thioesters. A high-throughput biochemical screen focusing on CoaB identified two inhibitors with different chemical scaffolds. Hit expansion led to the discovery of potent and selective inhibitors of M. tuberculosis CoaB, which we show to bind to a cryptic allosteric site within CoaB.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Carboxiliases/antagonistas & inibidores , Mycobacterium smegmatis/enzimologia , Mycobacterium tuberculosis/efeitos dos fármacos , Peptídeo Sintases/antagonistas & inibidores , Regulação Alostérica/efeitos dos fármacos , Sítio Alostérico/efeitos dos fármacos , Antituberculosos/uso terapêutico , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Carboxiliases/genética , Carboxiliases/metabolismo , Carboxiliases/ultraestrutura , Coenzima A/biossíntese , Cristalografia por Raios X , Ensaios Enzimáticos , Técnicas de Silenciamento de Genes , Ensaios de Triagem em Larga Escala , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Peptídeo Sintases/ultraestrutura , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
9.
ACS Omega ; 6(3): 2284-2311, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33521468

RESUMO

With the emergence of multi-drug-resistant strains of Mycobacterium tuberculosis, there is a pressing need for new oral drugs with novel mechanisms of action. A number of scaffolds with potent anti-tubercular in vitro activity have been identified from phenotypic screening that appear to target MmpL3. However, the scaffolds are typically lipophilic, which facilitates partitioning into hydrophobic membranes, and several contain basic amine groups. Highly lipophilic basic amines are typically cytotoxic against mammalian cell lines and have associated off-target risks, such as inhibition of human ether-à-go-go related gene (hERG) and IKr potassium current modulation. The spirocycle compound 3 was reported to target MmpL3 and displayed promising efficacy in a murine model of acute tuberculosis (TB) infection. However, this highly lipophilic monobasic amine was cytotoxic and inhibited the hERG ion channel. Herein, the related spirocycles (1-2) are described, which were identified following phenotypic screening of the Eli Lilly corporate library against M. tuberculosis. The novel N-alkylated pyrazole portion offered improved physicochemical properties, and optimization led to identification of a zwitterion series, exemplified by lead 29, with decreased HepG2 cytotoxicity as well as limited hERG ion channel inhibition. Strains with mutations in MmpL3 were resistant to 29, and under replicating conditions, 29 demonstrated bactericidal activity against M. tuberculosis. Unfortunately, compound 29 had no efficacy in an acute model of TB infection; this was most likely due to the in vivo exposure remaining above the minimal inhibitory concentration for only a limited time.

10.
Science ; 367(6482): 1147-1151, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32139546

RESUMO

Mycobacterium tuberculosis has an unusual outer membrane that lacks canonical porin proteins for the transport of small solutes to the periplasm. We discovered that 3,3-bis-di(methylsulfonyl)propionamide (3bMP1) inhibits the growth of M. tuberculosis, and resistance to this compound is conferred by mutation within a member of the proline-proline-glutamate (PPE) family, PPE51. Deletion of PPE51 rendered M. tuberculosis cells unable to replicate on propionamide, glucose, or glycerol. Growth was restored upon loss of the mycobacterial cell wall component phthiocerol dimycocerosate. Mutants in other proline-glutamate (PE)/PPE clusters, responsive to magnesium and phosphate, also showed a phthiocerol dimycocerosate-dependent growth compromise upon limitation of the corresponding substrate. Phthiocerol dimycocerosate determined the low permeability of the mycobacterial outer membrane, and the PE/PPE proteins apparently act as solute-specific channels.


Assuntos
Amidas/metabolismo , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Glucose/metabolismo , Glicerol/metabolismo , Mycobacterium tuberculosis/metabolismo , Proteínas de Bactérias/genética , Transporte Biológico , Permeabilidade da Membrana Celular , Farmacorresistência Bacteriana/genética , Deleção de Genes , Lipídeos/química , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Compostos de Sulfidrila/química , Compostos de Sulfidrila/farmacologia
11.
Bioorg Med Chem Lett ; 19(21): 6027-31, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19800787

RESUMO

The profile of a series of triazine and pyrimidine based ROCK inhibitors is described. An initial binding mode was established based on a homology model and the proposed interactions are consistent with the observed SAR. Compounds from the series are potent in a cell migration assay and possess a favorable kinase selectivity. In vivo activity was demonstrated for compound 1A in a spontaneous hypertensive rat model.


Assuntos
Anti-Hipertensivos/química , Hipertensão/tratamento farmacológico , Inibidores de Proteínas Quinases/química , Pirimidinas/química , Triazinas/química , Quinases Associadas a rho/antagonistas & inibidores , Animais , Anti-Hipertensivos/síntese química , Anti-Hipertensivos/farmacologia , Sítios de Ligação , Simulação por Computador , Modelos Animais de Doenças , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/síntese química , Pirimidinas/farmacologia , Ratos , Relação Estrutura-Atividade , Triazinas/síntese química , Triazinas/farmacologia , Quinases Associadas a rho/metabolismo
12.
ChemMedChem ; 13(7): 672-677, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29399991

RESUMO

Our findings reported herein provide support for the benefits of including functional group complexity (FGC) within fragments when screening against protein targets such as Mycobacterium tuberculosis InhA. We show that InhA fragment actives with FGC maintained their binding pose during elaboration. Furthermore, weak fragment hits with functional group handles also allowed for facile fragment elaboration to afford novel and potent InhA inhibitors with good ligand efficiency metrics for optimization.


Assuntos
Antituberculosos/química , Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/química , Mycobacterium tuberculosis/enzimologia , Oxirredutases/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/química , Antituberculosos/síntese química , Proteínas de Bactérias/química , Cristalografia por Raios X , Inibidores Enzimáticos/síntese química , Ligantes , Modelos Moleculares , Estrutura Molecular , Oxirredutases/química , Bibliotecas de Moléculas Pequenas/síntese química , Ressonância de Plasmônio de Superfície
13.
J Med Chem ; 61(15): 6592-6608, 2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-29944372

RESUMO

With the emergence of multidrug-resistant strains of Mycobacterium tuberculosis there is a pressing need for new oral drugs with novel mechanisms of action. Herein, we describe the identification of a novel morpholino-thiophenes (MOT) series following phenotypic screening of the Eli Lilly corporate library against M. tuberculosis strain H37Rv. The design, synthesis, and structure-activity relationships of a range of analogues around the confirmed actives are described. Optimized leads with potent whole cell activity against H37Rv, no cytotoxicity flags, and in vivo efficacy in an acute murine model of infection are described. Mode-of-action studies suggest that the novel scaffold targets QcrB, a subunit of the menaquinol cytochrome c oxidoreductase, part of the bc1-aa3-type cytochrome c oxidase complex that is responsible for driving oxygen-dependent respiration.


Assuntos
Citocromos c/metabolismo , Morfolinas/química , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Oxirredutases/metabolismo , Tiofenos/química , Tiofenos/farmacologia , Animais , Antituberculosos/química , Antituberculosos/farmacocinética , Antituberculosos/farmacologia , Antituberculosos/toxicidade , Chlorocebus aethiops , Camundongos , Relação Estrutura-Atividade , Tiofenos/farmacocinética , Tiofenos/toxicidade , Células Vero
14.
ACS Infect Dis ; 4(6): 954-969, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29522317

RESUMO

Mycobacterium tuberculosis ( MTb) possesses two nonproton pumping type II NADH dehydrogenase (NDH-2) enzymes which are predicted to be jointly essential for respiratory metabolism. Furthermore, the structure of a closely related bacterial NDH-2 has been reported recently, allowing for the structure-based design of small-molecule inhibitors. Herein, we disclose MTb whole-cell structure-activity relationships (SARs) for a series of 2-mercapto-quinazolinones which target the ndh encoded NDH-2 with nanomolar potencies. The compounds were inactivated by glutathione-dependent adduct formation as well as quinazolinone oxidation in microsomes. Pharmacokinetic studies demonstrated modest bioavailability and compound exposures. Resistance to the compounds in MTb was conferred by promoter mutations in the alternative nonessential NDH-2 encoded by ndhA in MTb. Bioenergetic analyses revealed a decrease in oxygen consumption rates in response to inhibitor in cells in which membrane potential was uncoupled from ATP production, while inverted membrane vesicles showed mercapto-quinazolinone-dependent inhibition of ATP production when NADH was the electron donor to the respiratory chain. Enzyme kinetic studies further demonstrated noncompetitive inhibition, suggesting binding of this scaffold to an allosteric site. In summary, while the initial MTb SAR showed limited improvement in potency, these results, combined with structural information on the bacterial protein, will aid in the future discovery of new and improved NDH-2 inhibitors.


Assuntos
Mycobacterium tuberculosis/enzimologia , NADH Desidrogenase/química , Quinazolinonas/química , Estrutura Molecular , NADH Desidrogenase/antagonistas & inibidores , Quinazolinonas/síntese química , Quinazolinonas/farmacologia , Relação Estrutura-Atividade
15.
Drug Discov Today ; 22(1): 43-56, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27793744

RESUMO

The availability of suitable diverse fragment- and lead-oriented screening compounds is key for the identification of suitable chemical starting points for drug discovery programs. The physicochemical properties of molecules are crucial in determining the success of small molecules in clinical development, yet reports suggest that pharmaceutical and academic sectors often produce molecules with poor drug-like properties. We present a platform to design novel, high quality and diverse fragment- and lead-oriented libraries with appropriate physicochemical properties in a cost-efficient manner. This approach has the potential to assist the way libraries are constructed by significantly addressing the historical uneven exploration of chemical space for drug discovery. Additionally, this platform can teach undergraduates and graduates about compound library design.


Assuntos
Desenho de Fármacos , Preparações Farmacêuticas/química , Preparações Farmacêuticas/síntese química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/síntese química , Estabilidade de Medicamentos , Modelos Químicos , Estrutura Molecular , Solubilidade
16.
Org Lett ; 13(24): 6406-9, 2011 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-22111621

RESUMO

A versatile one-pot nitro-Mannich/lactamization cascade for the direct synthesis of 1,3,5-trisubstituted 4-nitropyrrolidin-2-ones has been developed. The reaction is easy to perform and broad in scope, and high levels of diastereoselectivity can be achieved.


Assuntos
Nitrocompostos/química , Pirrolidinonas/síntese química , Catálise , Estrutura Molecular , Pirrolidinonas/química , Estereoisomerismo
17.
Org Lett ; 11(20): 4512-5, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19764710

RESUMO

An efficient three-component nitro-Mannich/lactamization cascade of methyl 3-nitropropanoate with in situ formed acyclic imines for the direct preparation of pyrrolidinone derivatives has been developed. The reaction is easy to perform, broad in scope, and highly diastereoselective and may be extended to cyclic imines allowing the direct formation of polycyclic pyrrolidinone derivatives.


Assuntos
Lactamas/química , Bases de Mannich/química , Nitrocompostos/química , Pirrolidinonas/química , Pirrolidinonas/síntese química , Aldeídos/química , Estereoisomerismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa