Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 105(23): 8593-8614, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34708277

RESUMO

Plant cell and tissue culture makes provision of a sustainable and nature-friendly strategy for the production of secondary metabolites, and modern progress in gene editing and genome engineering provides novel possibilities to improve both the qualitative and quantitative aspects of such phytochemicals. The ever-expanding quest for plant-based medicine to treat diabetes facilitates large-scale cultivation of Stevia rebaudiana to enhance the yield of its much-coveted low-calorie sweetener glycosides. The potential to process stevia as a "natural" product should enhance the acceptance of steviosides as a natural calorie-free sweetener especially suitable for use in diabetic and weight control drinks and foods. Besides sweetener agents, S. rebaudiana is a potent source of many antioxidant compounds and is used to cure immunodeficiencies, neurologic disorders, inflammation, diabetes mellitus, Parkinson's disease, and Alzheimer's disease. This comprehensive review presents the research outcomes of the many biotechnological interventions implicated to upscale the yield of steviol glycosides and its derivatives in in vitro cell, callus, tissue, and organ cultures with notes on the use of bioreactor and genetic engineering in relation to the production of these valuable compounds in S. rebaudiana. KEY POINTS: • Critical and updated assessment on sustainable production of steviol glycosides from Stevia rebaudiana. • In vitro propagation of S. rebaudiana and elicitation of steviol glycosides production. • Genetic fidelity and diversity assessment of S. rebaudiana using molecular markers.


Assuntos
Diabetes Mellitus , Diterpenos do Tipo Caurano , Stevia , Antioxidantes , Glicosídeos , Folhas de Planta , Stevia/genética , Edulcorantes
2.
Phytother Res ; 35(10): 5668-5679, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34254371

RESUMO

From ancient history, complementary and alternative medicines have played a significant role as holistic therapeutic treatments of various human diseases including cancer, diabetes, neurological diseases, and skin problems. One Indian medicinal plant (herb), Bacopa monnieri has been used in many parts of the world as such medicine, particularly for the treatment of various neurological disorders. It is well known as a potent "tonic for the human brain," which serves as a memory enhancer. Multiple studies proved that this herb contains a plethora of potential bioactive, phytochemical compounds with synergistic properties. The main purpose of the present review is to shed light on the use of Bacopa monnieri and its active principles (bacosides) in the management of neurological disorders. Furthermore, the signaling pathways modulated by bacosides have been critically discussed in this review. Moreover, we have critically summarized the present knowledge of this perennial creeping herb based upon the literature mining from different scientific engines.


Assuntos
Bacopa , Doenças do Sistema Nervoso , Plantas Medicinais , Triterpenos , Humanos , Doenças do Sistema Nervoso/tratamento farmacológico , Extratos Vegetais/farmacologia
3.
Biomed Pharmacother ; 146: 112555, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34954639

RESUMO

Human exposure to radiation has expanded considerably in recent years, due to a wide range of medical, agricultural, and industrial applications. Despite its beneficial utilities, radiation is also known to have a deleterious effect on cells and tissues, largely through the creation of free radicals, which cause severe damage to biological systems through processes such as DNA double/single-strand fragmentation, protein modification, and upregulation of lipid peroxidation pathways. In addition, radiation damages genetic material while inducing hereditary genotoxicity. Developing measures to counter radiation-induced damage is thus considered to be of significant importance. Considering the inherent capability of plants to survive radiative conditions, certain plants and natural compounds have been the subject of investigations to explore and harness their natural radioprotective abilities. Podophyllum hexandrum, an Indian medicinal plant with several known traditional phytotherapeutic uses, is considered in particular to be of immense therapeutic importance. Recent studies have been conducted to validate its radioprotective potential alongside discovering its protective mechanisms following γ-radiation-induced mortality and disorder in both mice and human cells. These findings show that Podophyllum and its constituents/natural compounds protect the lungs, gastrointestinal tissues, hemopoietic system, and testis by inducing DNA repair pathways, apoptosis inhibition, free radical scavenging, metal chelation, anti-oxidation and anti-inflammatory mechanisms. In this review, we have provided an updated, comprehensive summary of ionizing radiations and their impacts on biological systems, highlighting the mechanistic and radioprotective role of natural compounds from Podophyllum hexandrum.


Assuntos
Berberidaceae , Extratos Vegetais/farmacologia , Protetores contra Radiação/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quelantes/farmacologia , Reparo do DNA/efeitos dos fármacos , Sequestradores de Radicais Livres/metabolismo , Dose Máxima Tolerável , Medicina Tradicional , Mitocôndrias/efeitos dos fármacos , Protetores contra Radiação/química
4.
Front Microbiol ; 12: 754048, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659190

RESUMO

Invasive plant species are a major threat to biodiversity and agricultural productivity. Hence, efforts to manage these menace involves extensive and effective use of chemical herbicides amongst others. However, not only is the impact of control with chemical herbicides short-lived but also leads to negative impact on human health and environment due to non-target herbicide-drift and runoff from the sprayed areas. This has ushed in much-anticipated nature-based potential regulators of weed species, in an attempt to lower the utilisation of chemical herbicides. Mycoherbicides have been seen as a benign, eco-friendly, host-specific, and replacement for chemical herbicides. There are several noteworthy genera of fungus that have been proved to be effective against weeds. They either produce strong phytotoxins or are often used as spore/conidia-based solutions and applied as a spray in growth media. One of such potential genera is Colletotrichum Corda 1831. Compared to other potent fungal genera, with well-established roles in conferring herbicidal activities by producing competent phytotoxins, only a few species under genus Colletotrichum are known to produce fungal metabolites be used as phytotoxins. This article elucidates the current understanding of using spore suspension/phytotoxin of Colletotrichum as a weedicide. We also discuss the interaction between fungal metabolites release and Colletotrichum-target plant, from a molecular and biochemical point of view. This review article has been written to accentuate on the potency of Colletotrichum, and to serve as an eye-opener to consider this genus for further fruitful investigations. However, inconsistency associated with mycoherbicides in terms of viability and efficacy under field conditions, production of bioactive compound, slow natural dispersal ability, etc., have often reduced their utility. Hence, our study emphasizes on the need to do extensive research in elucidating more phytotoxins from necrotrophic phytopathogenic microorganisms with novel mode of action for field application.

5.
Front Plant Sci ; 12: 701800, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659281

RESUMO

Endophytic fungi ubiquitously dwell inside the tissue-spaces of plants, mostly asymptomatically. They grow either intercellularly or intracellularly in a particular host plant to complete the whole or part of their life cycle. They have been found to be associated with almost all the plants occurring in a natural ecosystem. Due to their important role in the survival of plants (modulate photosynthesis, increase nutrient uptake, alleviate the effect of various stresses) they have been selected to co-evolve with their hosts through the course of evolution. Many years of intense research have discovered their tremendous roles in increasing the fitness of the plants in both normal and stressed conditions. There are numerous literature regarding the involvement of various endophytic fungi in enhancing plant growth, nutrient uptake, stress tolerance, etc. But, there are scant reports documenting the specific mechanisms employed by fungal endophytes to manipulate plant physiology and exert their effects. In this review, we aim to document the probable ways undertaken by endophytic fungi to alter different physiological parameters of their host plants. Our objective is to present an in-depth elucidation about the impact of fungal endophytes on plant physiology to make this evolutionarily conserved symbiotic interaction understandable from a broader perspective.

6.
J Ethnopharmacol ; 254: 112609, 2020 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-32007632

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Hemidesmus indicus (L.) R. Br. ex Schult. (Apocynaceae) is widely used in traditional medicine in the different parts of the Indian subcontinent due to the various biological activities attributed to its different parts, especially the roots. It has traditionally been used for treating snakebites, scorpion stings, diabetes, urinary diseases, dyspnea, menorrhagia, oligospermia, anorexia, fever, abdominal colic and pain, dysentery, diarrhea, cough, rheumatism, headache, inflammation, pyrosis, skin diseases, leprosy, sexually transmitted diseases and cancer. In Ayurveda, the plant is used in the treatment of bone-loss, low body weight, fever, stress, topical wound and psoriasis. Besides, Ayurvedic literature also depicts its use as anti-atherogenic, anti-spasmodic, memory enhancing, immunopotentiating and anti-inflammatory agents. AIM OF THE STUDY: In this review, we aim to present a comprehensive update on the ethnopharmacology, phytochemistry, specific pharmacology, and toxicology of H. indicus and its bioactive metabolites. Possible directions for future research are also outlined in brief. MATERIALS AND METHODS: Popular and widely used international databases such as PubMed, Scopus, Science Direct, Google Scholar and JSTOR were searched and traditional literature were consulted using the various search strings to retrieve a number of citations related to the ethnopharmacology, biological activity, toxicology, quality control and phytochemistry of H. indicus. All studies on the ethnobotany, phtochemistry, pharmacology, and toxicology of the plant up to 2019 were included in this review. RESULTS: H. indicus has played an important role in traditional Indian medicine (including Ayurveda) and also in European medicine. The main pharmacological properties of H. indicus include hepatoprotective, anti-cancer, anti-diabetic, antioxidant, neuroprotective, anti-ophidian, cardioprotective, nephroprotective, anti-ulcerogenic, anti-inflammatory, and antimicrobial properties. Phytochemical evaluations of the root have revealed the presence of aromatic aldehydes and their derivatives, phenolics, triterpenoids and many other compounds, some of which were attributed to its bioactivity. This review also compiles a list of Ayurvedic formulations and commercial preparations where H. indicus has been used as an active ingredient. We have included the critical assessment of all the papers cited in this manuscript based on experimental observation and other important points which reflect the loop-holes of research strategy and ambiguity in the papers reviewed in this manuscript. CONCLUSIONS: The study presents an exhaustive and updated review on the traditional, pharmacological and phytochemical aspects of H. indicus with notes on its quality control and toxicological information. Although the crude extracts of H. indicus exhibit an array of pharmacological activities, it is high time to identify more active phyto-constituents by bioactivity-guided isolation besides elucidating their structure-activity relationship. More designed investigations are needed to comprehend the multi-target network pharmacology, to clarify the molecular mode of action and to ascertain the efficacious doses of H. indicus. Moreover, H. indicus is not fully assessed on the basis of its safety and efficacy on human. We hope this review will compile and improve the existing knowledge on the potential utilization of H. indicus in complementary and alternative medicine.


Assuntos
Hemidesmus/efeitos adversos , Hemidesmus/química , Compostos Fitoquímicos/farmacologia , Animais , Etnobotânica , Etnofarmacologia , Humanos , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacocinética , Fitoterapia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa