Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nature ; 550(7674): 96-100, 2017 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-28892810

RESUMO

Cooperative binding, whereby an initial binding event facilitates the uptake of additional substrate molecules, is common in biological systems such as haemoglobin. It was recently shown that porous solids that exhibit cooperative binding have substantial energetic benefits over traditional adsorbents, but few guidelines currently exist for the design of such materials. In principle, metal-organic frameworks that contain coordinatively unsaturated metal centres could act as both selective and cooperative adsorbents if guest binding at one site were to trigger an electronic transformation that subsequently altered the binding properties at neighbouring metal sites. Here we illustrate this concept through the selective adsorption of carbon monoxide (CO) in a series of metal-organic frameworks featuring coordinatively unsaturated iron(ii) sites. Functioning via a mechanism by which neighbouring iron(ii) sites undergo a spin-state transition above a threshold CO pressure, these materials exhibit large CO separation capacities with only small changes in temperature. The very low regeneration energies that result may enable more efficient Fischer-Tropsch conversions and extraction of CO from industrial waste feeds, which currently underutilize this versatile carbon synthon. The electronic basis for the cooperative adsorption demonstrated here could provide a general strategy for designing efficient and selective adsorbents suitable for various separations.

2.
J Am Chem Soc ; 144(1): 306-313, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34937334

RESUMO

We show that reaction pathways from a single superatom motif can be controlled through subtle electronic modification of the outer ligand spheres. Chevrel-type [Co6Se8L6] (L = PR3, CO) superatoms are used to form carbene-terminated clusters, the reactivity of which can be influenced through the electronic effects of the surrounding ligands. This carbene provides new routes for ligand substitution chemistry, which is used to selectively install cyanide or pyridine ligands which were previously inaccessible in these cobalt-based clusters. The surrounding ligands also impact the ability of this carbene to create larger fused clusters of the type [Co12Se16L10], providing underlying information for cluster fusion mechanisms. We use this information to develop methods of creating dimeric clusters with functionalized surface ligands with site specificity, putting new ligands in specific positions on this anisotropic core. Finally, adjusting the carbene intermediates can also be used to perturb the geometry of the [Co6Se8] core itself, as we demonstrate with a multicarbene adduct that displays a substantially anisotropic core. These additional levels of synthetic control could prove instrumental for using superatomic clusters for many applications including catalysis, electronic devices, and creating novel extended structures.

3.
J Am Chem Soc ; 144(1): 74-79, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34978439

RESUMO

Coating two-dimensional (2D) materials with molecules bearing tunable properties imparts their surfaces with functionalities for applications in sensing, nanoelectronics, nanofabrication, and electrochemistry. Here, we report a method for the site-selective surface functionalization of 2D superatomic Re6Se8Cl2 monolayers. First, we activate bulk layered Re6Se8Cl2 by intercalating lithium and then exfoliate the intercalation compound Li2Re6Se8Cl2 in N-methylformamide (NMF). Heating the resulting solution eliminates LiCl to produce monolayer Re6Se8(NMF)2-x (x ≈ 0.4) as high-quality nanosheets. The unpaired electrons on each cluster in Re6Se8(NMF)2-x enable covalent surface functionalization through radical-based chemistry. We demonstrate this to produce four previously unknown surface-functionalized 2D superatomic materials: Re6Se8I2, Re6Se8(SPh)2, Re6Se8(SPhNH2)2, and Re6Se8(SC16H33)2. Transmission electron microscopy, chemical analysis, and vibrational spectroscopy reveal that the in-plane structure of the 2D Re6Se8 material is preserved through surface functionalization. We find that the incoming groups control the density of vacancy defects and the solubility of the 2D material. This approach will find utility in installing a broad array of chemical functionalities on the surface of 2D superatomic materials as a means to systematically tune their physical properties, chemical reactivity, and solution processability.

4.
Nat Mater ; 20(8): 1136-1141, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33795846

RESUMO

Pseudocapacitors harness unique charge-storage mechanisms to enable high-capacity, rapidly cycling devices. Here we describe an organic system composed of perylene diimide and hexaazatrinaphthylene exhibiting a specific capacitance of 689 F g-1 at a rate of 0.5 A g-1, stability over 50,000 cycles, and unprecedented performance at rates as high as 75 A g-1. We incorporate the material into two-electrode devices for a practical demonstration of its potential in next-generation energy-storage systems. We identify the source of this exceptionally high rate charge storage as surface-mediated pseudocapacitance, through a combination of spectroscopic, computational and electrochemical measurements. By underscoring the importance of molecular contortion and complementary electronic attributes in the selection of molecular components, these results provide a general strategy for the creation of organic high-performance energy-storage materials.

5.
Nat Mater ; 19(5): 517-521, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32015534

RESUMO

Industrial processes prominently feature π-acidic gases, and an adsorbent capable of selectively interacting with these molecules could enable important chemical separations1-4. Biological systems use accessible, reducing metal centres to bind and activate weakly π-acidic species, such as N2, through backbonding interactions5-7, and incorporating analogous moieties into a porous material should give rise to a similar adsorption mechanism for these gaseous substrates8. Here, we report a metal-organic framework featuring exposed vanadium(II) centres capable of back-donating electron density to weak π acids to successfully target π acidity for separation applications. This adsorption mechanism, together with a high concentration of available adsorption sites, results in record N2 capacities and selectivities for the removal of N2 from mixtures with CH4, while further enabling olefin/paraffin separations at elevated temperatures. Ultimately, incorporating such π-basic metal centres into porous materials offers a handle for capturing and activating key molecular species within next-generation adsorbents.

6.
J Am Chem Soc ; 142(35): 14924-14932, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32809814

RESUMO

Atomically precise clusters can be used to create single-electron devices wherein a single redox-active cluster is connected to two macroscopic electrodes via anchoring ligands. Unlike single-electron devices comprising nanocrystals, these cluster-based devices can be fabricated with atomic precision. This affords an unprecedented level of control over the device properties. Herein, we design a series of cobalt chalcogenide clusters with varying ligand geometries and core nuclearities to control their current-voltage (I-V) characteristics in a scanning tunneling microscope-based break junction (STM-BJ) device. First, the device geometry is modified by precisely positioning junction-anchoring ligands on the surface of the cluster. We show that the I-V characteristics are independent of ligand placement, confirming a sequential, single-electron tunneling mechanism. Next, we chemically fuse two clusters to realize a larger cluster dimer that behaves as a single electronic unit, possessing a smaller reorganization energy and more accessible redox states than the monomeric analogues. As a result, dimer-based devices exhibit significantly higher currents and can even be pushed to current saturation at high bias. Owing to these controllable properties, single-cluster junctions serve as an excellent platform for exploring incoherent charge transport processes at the nanoscale. With this understanding, as well as properties such as nonlinear I-V characteristics and rectification, these molecular clusters may function as conductive inorganic nodes in new devices and materials.

7.
J Am Chem Soc ; 140(9): 3412-3422, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29446932

RESUMO

Purification of the C8 alkylaromatics o-xylene, m-xylene, p-xylene, and ethylbenzene remains among the most challenging industrial separations, due to the similar shapes, boiling points, and polarities of these molecules. Herein, we report the evaluation of the metal-organic frameworks Co2(dobdc) (dobdc4- = 2,5-dioxido-1,4-benzenedicarboxylate) and Co2( m-dobdc) ( m-dobdc4- = 4,6-dioxido-1,3-benzenedicarboxylate) for the separation of xylene isomers using single-component adsorption isotherms and multicomponent breakthrough measurements. Remarkably, Co2(dobdc) distinguishes among all four molecules, with binding affinities that follow the trend o-xylene > ethylbenzene > m-xylene > p-xylene. Multicomponent liquid-phase adsorption measurements further demonstrate that Co2(dobdc) maintains this selectivity over a wide range of concentrations. Structural characterization by single-crystal X-ray diffraction reveals that both frameworks facilitate the separation through the extent of interaction between each C8 guest molecule with two adjacent cobalt(II) centers, as well as the ability of each isomer to pack within the framework pores. Moreover, counter to the presumed rigidity of the M2(dobdc) structure, Co2(dobdc) exhibits an unexpected structural distortion in the presence of either o-xylene or ethylbenzene that enables the accommodation of additional guest molecules.


Assuntos
Cobalto/química , Estruturas Metalorgânicas/química , Ácidos Ftálicos/química , Xilenos/isolamento & purificação , Adsorção , Isomerismo , Modelos Moleculares
8.
J Am Chem Soc ; 139(43): 15363-15370, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28981259

RESUMO

The metal-organic frameworks M2(m-dobdc) (M = Mn, Fe, Co, Ni; m-dobdc4- = 4,6-dioxido-1,3-benzenedicarboxylate) were evaluated as adsorbents for separating olefins from paraffins. Using single-component and multicomponent equilibrium gas adsorption measurements, we show that the coordinatively unsaturated M2+ sites in these materials lead to superior performance for the physisorptive separation of ethylene from ethane and propylene from propane relative to any known adsorbent, including para-functionalized structural isomers of the type M2(p-dobdc) (p-dobdc4- = 2,5-dioxido-1,4-benzenedicarboxylate). Notably, the M2(m-dobdc) frameworks all exhibit an increased affinity for olefins over paraffins relative to their corresponding structural isomers, with the Fe, Co, and Ni variants showing more than double the selectivity. Among these frameworks, Fe2(m-dobdc) displays the highest ethylene/ethane (>25) and propylene/propane (>55) selectivity under relevant conditions, together with olefin capacities exceeding 7 mmol/g. Differential enthalpy calculations in conjunction with structural characterization of ethylene binding in Co2(m-dobdc) and Co2(p-dobdc) via in situ single-crystal X-ray diffraction reveal that the vast improvement in selectivity arises from enhanced metal-olefin interactions induced by increased charge density at the metal site. Moderate olefin binding enthalpies, below 55 and 70 kJ/mol for ethylene and propylene, respectively, indicate that these adsorbents maintain sufficient reversibility under mild regeneration conditions. Additionally, transient adsorption experiments show fast kinetics, with more than 90% of ethylene adsorption occurring within 30 s after dosing. Breakthrough measurements further indicate that Co2(m-dobdc) can produce high purity olefins without a temperature swing, an important test of process applicability. The excellent olefin/paraffin selectivity, high olefin capacity, rapid adsorption kinetics, and low raw materials cost make the M2(m-dobdc) frameworks the materials of choice for adsorptive olefin/paraffin separations.

9.
J Am Chem Soc ; 138(17): 5594-602, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27097297

RESUMO

A new metal-organic framework, Fe-BTTri (Fe3[(Fe4Cl)3(BTTri)8]2·18CH3OH, H3BTTri =1,3,5-tris(1H-1,2,3-triazol-5-yl)benzene)), is found to be highly selective in the adsorption of CO over a variety of other gas molecules, making it extremely effective, for example, in the removal of trace CO from mixtures with H2, N2, and CH4. This framework not only displays significant CO adsorption capacity at very low pressures (1.45 mmol/g at just 100 µbar), but, importantly, also exhibits readily reversible CO binding. Fe-BTTri utilizes a unique spin state change mechanism to bind CO in which the coordinatively unsaturated, high-spin Fe(II) centers of the framework convert to octahedral, low-spin Fe(II) centers upon CO coordination. Desorption of CO converts the Fe(II) sites back to a high-spin ground state, enabling the facile regeneration and recyclability of the material. This spin state change is supported by characterization via infrared spectroscopy, single crystal X-ray analysis, Mössbauer spectroscopy, and magnetic susceptibility measurements. Importantly, the spin state change is selective for CO and is not observed in the presence of other gases, such as H2, N2, CO2, CH4, or other hydrocarbons, resulting in unprecedentedly high selectivities for CO adsorption for use in CO/H2, CO/N2, and CO/CH4 separations and in preferential CO adsorption over typical strongly adsorbing gases like CO2 and ethylene. While adsorbate-induced spin state transitions are well-known in molecular chemistry, particularly for CO, to our knowledge this is the first time such behavior has been observed in a porous material suitable for use in a gas separation process. Potentially, this effect can be extended to selective separations involving other π-acids.

10.
J Am Chem Soc ; 138(32): 10143-50, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27486905

RESUMO

The drug olsalazine (H4olz) was employed as a ligand to synthesize a new series of mesoporous metal-organic frameworks that are expanded analogues of the well-known M2(dobdc) materials (dobdc(4-) = 2,5-dioxido-1,4-benzenedicarboxylate; M-MOF-74). The M2(olz) frameworks (M = Mg, Fe, Co, Ni, and Zn) exhibit high surface areas with large hexagonal pore apertures that are approximately 27 Å in diameter. Variable temperature H2 adsorption isotherms revealed strong adsorption at the open metal sites, and in situ infrared spectroscopy experiments on Mg2(olz) and Ni2(olz) were used to determine site-specific H2 binding enthalpies. In addition to its capabilities for gas sorption, the highly biocompatible Mg2(olz) framework was also evaluated as a platform for the delivery of olsalazine and other encapsulated therapeutics. The Mg2(olz) material (86 wt % olsalazine) was shown to release the therapeutic linker through dissolution of the framework under simulated physiological conditions. Furthermore, Mg2(olz) was used to encapsulate phenethylamine (PEA), a model drug for a broad class of bioactive compounds. Under simulated physiological conditions, Mg2(olz)(PEA)2 disassembled to release PEA from the pores and olsalazine from the framework itself, demonstrating that multiple therapeutic components can be delivered together at different rates. The low toxicity, high surface areas, and coordinatively unsaturated metal sites make these M2(olz) materials promising for a range of potential applications, including drug delivery in the treatment of gastrointestinal diseases.


Assuntos
Ácidos Aminossalicílicos/química , Materiais Biocompatíveis/química , Sistemas de Liberação de Medicamentos , Adsorção , Sítios de Ligação , Química Orgânica , Portadores de Fármacos , Gastroenteropatias/tratamento farmacológico , Humanos , Hidrogênio/química , Ligantes , Estruturas Metalorgânicas , Metais/química , Compostos Orgânicos/química , Fenetilaminas/química , Ácidos Ftálicos , Espectrofotometria Infravermelho , Propriedades de Superfície
11.
J Am Chem Soc ; 136(2): 698-704, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24313689

RESUMO

Gas separations with porous materials are economically important and provide a unique challenge to fundamental materials design, as adsorbent properties can be altered to achieve selective gas adsorption. Metal-organic frameworks represent a rapidly expanding new class of porous adsorbents with a large range of possibilities for designing materials with desired functionalities. Given the large number of possible framework structures, quantum mechanical computations can provide useful guidance in prioritizing the synthesis of the most useful materials for a given application. Here, we show that such calculations can predict a new metal-organic framework of potential utility for separation of dinitrogen from methane, a particularly challenging separation of critical value for utilizing natural gas. An open V(II) site incorporated into a metal-organic framework can provide a material with a considerably higher enthalpy of adsorption for dinitrogen than for methane, based on strong selective back bonding with the former but not the latter.

12.
Obes Surg ; 33(9): 2874-2883, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37537505

RESUMO

PURPOSE: Populations most affected by obesity are not reflected in the patients who undergo bariatric surgery. Gaps in the referral system have been studied, but there is a lack of literature investigating obstacles patients encounter after first contact with bariatric surgery clinics. We aim to identify patient populations at risk for attrition during bariatric surgery evaluation and determine patient reported barriers to bariatric surgical care. MATERIALS AND METHODS: This study was a single institution, retrospective, mixed methods study from 2012 to 2021 comparing patients who underwent bariatric surgery to those that withdrew. Surveys were performed of patients who withdrew, collecting information on patient knowledge, expectations, and barriers. RESULTS: This study included 5982 patients evaluated in bariatric surgery clinic. Those who attained bariatric surgery (38.8%) were more likely to be White (81.2 vs. 75.6%, p<0.001), married (48.5 vs. 44.1%, p=0.004), and employed full time (48.2 vs. 43.8%, p=0.01). They were less likely to live in an area with low income (37.1 vs. 40.7%, p=0.01) or poverty (poverty rate 15.8 vs. 17.4, p<0.001). Of the 280 survey respondents, fear of complications, length of insurance approval process, and wait time between evaluation and surgery were the most reported barriers. CONCLUSION: Patients who undergo bariatric surgery were more likely to be White, married, employed full time, and reside in more resourced environments which is not reflective of communities most affected by obesity. The complexity of insurance coverage requirements was a major barrier to bariatric surgery and should be a focus of future healthcare reform.


Assuntos
Cirurgia Bariátrica , Obesidade Mórbida , Humanos , Obesidade Mórbida/cirurgia , Estudos Retrospectivos , Obesidade/cirurgia , Inquéritos e Questionários
13.
Chem Sci ; 11(6): 1698-1702, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34084391

RESUMO

Bio-inspired motifs for gas binding and small molecule activation can be used to design more selective adsorbents for gas separation applications. Here, we report an iron metal-organic framework, Fe-BTTri (Fe3[(Fe4Cl)3(BTTri)8]2·18CH3OH, H3BTTri = 1,3,5-tris(1H-1,2,3-triazol-5-yl)benzene), that binds O2 in a manner similar to hemoglobin and therefore results in highly selective O2 binding. As confirmed by gas adsorption studies and Mössbauer and infrared spectroscopy data, the exposed iron sites in the framework reversibly adsorb substantial amounts of O2 at low temperatures by converting between high-spin, square-pyramidal Fe(ii) centers in the activated material to low-spin, octahedral Fe(iii)-superoxide sites upon gas binding. This change in both oxidation state and spin state observed in Fe-BTTri leads to selective and readily reversible O2 binding, with the highest reported O2/N2 selectivity for any iron-based framework.

14.
Nat Commun ; 11(1): 3087, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32555184

RESUMO

The design of stable adsorbents capable of selectively capturing dioxygen with a high reversible capacity is a crucial goal in functional materials development. Drawing inspiration from biological O2 carriers, we demonstrate that coupling metal-based electron transfer with secondary coordination sphere effects in the metal-organic framework Co2(OH)2(bbta) (H2bbta = 1H,5H-benzo(1,2-d:4,5-d')bistriazole) leads to strong and reversible adsorption of O2. In particular, moderate-strength hydrogen bonding stabilizes a cobalt(III)-superoxo species formed upon O2 adsorption. Notably, O2-binding in this material weakens as a function of loading, as a result of negative cooperativity arising from electronic effects within the extended framework lattice. This unprecedented behavior extends the tunable properties that can be used to design metal-organic frameworks for adsorption-based applications.

15.
Adv Mater ; 31(36): e1903209, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31342595

RESUMO

The coupling of phonons to electrons and other phonons plays a defining role in material properties, such as charge and energy transport, light emission, and superconductivity. In atomic solids, phonons are delocalized over the 3D lattice, in contrast to molecular solids where localized vibrations dominate. Here, a hierarchical semiconductor that expands the phonon space by combining localized 0D modes with delocalized 2D and 3D modes is described. This material consists of superatomic building blocks (Re6 Se8 ) covalently linked into 2D sheets that are stacked into a layered van der Waals lattice. Using transient reflectance spectroscopy, three types of coherent phonons are identified: localized 0D breathing modes of isolated superatom, 2D synchronized twisting of superatoms in layers, and 3D acoustic interlayer deformation. These phonons are coupled to the electronic degrees of freedom to varying extents. The presence of local phonon modes in an extended crystal opens the door to controlling material properties from hierarchical phonon engineering.

16.
Nat Commun ; 9(1): 5133, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30510262

RESUMO

Over one million tons of CS2 are produced annually, and emissions of this volatile and toxic liquid, known to generate acid rain, remain poorly controlled. As such, materials capable of reversibly capturing this commodity chemical in an energy-efficient manner are of interest. Recently, we detailed diamine-appended metal-organic frameworks capable of selectively capturing CO2 through a cooperative insertion mechanism that promotes efficient adsorption-desorption cycling. We therefore sought to explore the ability of these materials to capture CS2 through a similar mechanism. Employing crystallography, spectroscopy, and gas adsorption analysis, we demonstrate that CS2 is indeed cooperatively adsorbed in N,N-dimethylethylenediamine-appended M2(dobpdc) (M = Mg, Mn, Zn; dobpdc4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate), via the formation of electrostatically paired ammonium dithiocarbamate chains. In the weakly thiophilic Mg congener, chemisorption is cleanly reversible with mild thermal input. This work demonstrates that the cooperative insertion mechanism can be generalized to other high-impact target molecules.


Assuntos
Dissulfeto de Carbono/química , Diaminas/química , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/síntese química , Adsorção , Dióxido de Carbono/química , Magnésio/química , Modelos Químicos , Estrutura Molecular , Compostos de Amônio Quaternário/química , Temperatura , Tiocarbamatos/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa