Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Pediatr Res ; 95(3): 641-646, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37833533

RESUMO

BACKGROUND: Osteopontin (OPN) is an important breastmilk protein involved in infant intestinal, immunological, and brain development. However, little is known about how common milk pasteurization and storage techniques affect this important bioactive protein. METHODS: Human milk osteopontin concentration was measured in single-donor fresh (n = 1) or frozen (n = 20) breastmilk, pooled Holder-pasteurized donor breastmilk (n = 11), and a shelf-stable (retort pasteurized) breastmilk product (n = 2) by ELISA. Single-donor breastmilk samples were subjected to pasteurization and/or freezing before measuring osteopontin concentrations. RESULTS: Holder pasteurization of breastmilk resulted in an ∼50% decrease in osteopontin concentration within single-donor samples. Breastmilk from mothers of preterm infants trended toward higher osteopontin concentration than mothers of term infants; however, samples from preterm mothers experienced greater osteopontin degradation upon pasteurization. A commercial breastmilk product that underwent retort pasteurization had lower osteopontin concentration than a Holder-pasteurized pooled breastmilk product. Finally, freezing breastmilk prior to Holder pasteurization resulted in less osteopontin degradation than Holder pasteurization prior to freezing. CONCLUSIONS: Commonly used breastmilk pasteurization and storage techniques, including freezing and Holder pasteurization, decrease the concentration of the bioactive protein osteopontin in human breastmilk. Holder pasteurization reduced osteopontin concentration by an average of 63%, while freezing resulted in an 8-12% decrease. IMPACT: Pasteurization of human breastmilk significantly decreases the concentration of the bioactive protein osteopontin. Use of both pasteurization and freezing techniques for breastmilk preservation results in greater loss of osteopontin. This study presents for the first time an analysis of osteopontin concentrations in single-donor pasteurized milk samples.


Assuntos
Leite Humano , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Osteopontina , Pasteurização/métodos
2.
Am J Physiol Heart Circ Physiol ; 325(4): H687-H701, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37566109

RESUMO

The ductus arteriosus (DA) is a vascular shunt that allows oxygenated blood to bypass the developing lungs in utero. Fetal DA patency requires vasodilatory signaling via the prostaglandin E2 (PGE2) receptor EP4. However, in humans and mice, disrupted PGE2-EP4 signaling in utero causes unexpected patency of the DA (PDA) after birth, suggesting another role for EP4 during development. We used EP4-knockout (KO) mice and acute versus chronic pharmacological approaches to investigate EP4 signaling in DA development and function. Expression analyses identified EP4 as the primary EP receptor in the DA from midgestation to term; inhibitor studies verified EP4 as the primary dilator during this period. Chronic antagonism recapitulated the EP4 KO phenotype and revealed a narrow developmental window when EP4 stimulation is required for postnatal DA closure. Myography studies indicate that despite reduced contractile properties, the EP4 KO DA maintains an intact oxygen response. In newborns, hyperoxia constricted the EP4 KO DA but survival was not improved, and permanent remodeling was disrupted. Vasomotion and increased nitric oxide (NO) sensitivity in the EP4 KO DA suggest incomplete DA development. Analysis of DA maturity markers confirmed a partially immature EP4 KO DA phenotype. Together, our data suggest that EP4 signaling in late gestation plays a key developmental role in establishing a functional term DA. When disrupted in EP4 KO mice, the postnatal DA exhibits signaling and contractile properties characteristic of an immature DA, including impairments in the first, muscular phase of DA closure, in addition to known abnormalities in the second permanent remodeling phase.NEW & NOTEWORTHY EP4 is the primary EP receptor in the ductus arteriosus (DA) and is critical during late gestation for its development and eventual closure. The "paradoxical" patent DA (PDA) phenotype of EP4-knockout mice arises from a combination of impaired contractile potential, altered signaling properties, and a failure to remodel associated with an underdeveloped immature vessel. These findings provide new mechanistic insights into women who receive NSAIDs to treat preterm labor, whose infants have unexplained PDA.


Assuntos
Permeabilidade do Canal Arterial , Canal Arterial , Camundongos , Animais , Recém-Nascido , Feminino , Gravidez , Humanos , Canal Arterial/metabolismo , Dinoprostona/metabolismo , Receptores de Prostaglandina E Subtipo EP4/genética , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Permeabilidade do Canal Arterial/genética , Camundongos Knockout
3.
Pharmacol Res ; 195: 106876, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37536638

RESUMO

There is a lack of FDA-approved tocolytics for the management of preterm labor (PL). In prior drug discovery efforts, we identified mundulone and mundulone acetate (MA) as inhibitors of in vitro intracellular Ca2+-regulated myometrial contractility. In this study, we probed the tocolytic potential of these compounds using human myometrial samples and a mouse model of preterm birth. In a phenotypic assay, mundulone displayed greater efficacy, while MA showed greater potency and uterine-selectivity in the inhibition of intracellular-Ca2+ mobilization. Cell viability assays revealed that MA was significantly less cytotoxic. Organ bath and vessel myography studies showed that only mundulone exerted inhibition of myometrial contractions and that neither compounds affected vasoreactivity of ductus arteriosus. A high-throughput combination screen identified that mundulone exhibits synergism with two clinical-tocolytics (atosiban and nifedipine), and MA displayed synergistic efficacy with nifedipine. Of these combinations, mundulone+atosiban demonstrated a significant improvement in the in vitro therapeutic index compared to mundulone alone. The ex vivo and in vivo synergism of mundulone+atosiban was substantiated, yielding greater tocolytic efficacy and potency on myometrial tissue and reduced preterm birth rates in a mouse model of PL compared to each single agent. Treatment with mundulone after mifepristone administration dose-dependently delayed the timing of delivery. Importantly, mundulone+atosiban permitted long-term management of PL, allowing 71% dams to deliver viable pups at term (>day 19, 4-5 days post-mifepristone exposure) without visible maternal and fetal consequences. Collectively, these studies provide a strong foundation for the development of mundulone as a single or combination tocolytic for management of PL.


Assuntos
Produtos Biológicos , Trabalho de Parto Prematuro , Nascimento Prematuro , Tocolíticos , Feminino , Recém-Nascido , Camundongos , Animais , Humanos , Tocolíticos/farmacologia , Tocolíticos/uso terapêutico , Nascimento Prematuro/tratamento farmacológico , Nifedipino/farmacologia , Nifedipino/uso terapêutico , Mifepristona/uso terapêutico , Produtos Biológicos/uso terapêutico , Trabalho de Parto Prematuro/tratamento farmacológico
4.
Dev Dyn ; 251(3): 424-443, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34350653

RESUMO

The ductus arteriosus (DA) is a unique fetal vascular shunt, which allows blood to bypass the developing lungs in utero. After birth, changes in complex signaling pathways lead to constriction and permanent closure of the DA. The persistent patency of the DA (PDA) is a common disorder in preterm infants, yet the underlying causes of PDA are not fully defined. Although limits on the availability of human DA tissues prevent comprehensive studies on the mechanisms of DA function, mouse models have been developed that reveal critical pathways in DA regulation. Over 20 different transgenic models of PDA in mice have been described, with implications for human DA biology. Similarly, we enumerate 224 human single-gene syndromes that are associated with PDA, including a small subset that consistently feature PDA as a prominent phenotype. Comparison and functional analyses of these genes provide insight into DA development and identify key regulatory pathways that may serve as potential therapeutic targets for the management of PDA.


Assuntos
Permeabilidade do Canal Arterial , Canal Arterial , Animais , Modelos Animais de Doenças , Canal Arterial/metabolismo , Permeabilidade do Canal Arterial/tratamento farmacológico , Permeabilidade do Canal Arterial/etiologia , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Camundongos
5.
Am J Physiol Lung Cell Mol Physiol ; 323(5): L626-L635, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36223639

RESUMO

Neonatology pioneer Mildred (Millie) T. Stahlman celebrated her 100th birthday on July 31, 2022. Her distinguished career at Vanderbilt University Medical Center in Nashville, TN, is reviewed to commemorate this milestone. Stahlman was arguably the first to establish a modern neonatal intensive care unit in 1961, successfully utilizing negative pressure ventilation and umbilical arterial and venous catheters to monitor blood gasses and pH levels. She received early invaluable training in newborn physiology at the Karolinska Institute in Stockholm, Sweden, under John Lind and Petter Karlberg, and at Vanderbilt under Elliot V. Newman. Stahlman also consulted with luminaries Geoffrey Dawes, Donald Barron, and L. Stanley James. As director of the Vanderbilt NICU, she trained 80 fellows from more than 20 countries. The latter 20 years of her career were highlighted by collaborations with Jeff Whitsett. She was the recipient of the AAP Virginia Apgar Award, the APS John Howland Medal, and served as a member of the Institute of Medicine.


Assuntos
Pneumonia , Nascimento Prematuro , Doença Pulmonar Obstrutiva Crônica , Humanos , Recém-Nascido , Feminino , Idoso de 80 Anos ou mais , Terapia Intensiva Neonatal , Antibacterianos , Saúde Global , Centenários , Farmacorresistência Bacteriana
6.
Am J Physiol Regul Integr Comp Physiol ; 322(2): R126-R135, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34984926

RESUMO

Many lung diseases are caused by an excessive inflammatory response, and inflammatory lung diseases are often modeled using lipopolysaccharide (LPS) in mice. Cyclooxygenase-2 (COX-2) encoded by the Ptgs2 gene is induced in response to inflammatory stimuli including LPS. The objective of this study was to test the hypothesis that mice deficient in COX-2 (Ptgs2-/-) will be protected from LPS-induced lung injury. Wild-type (WT; CD1 mice) and Ptgs2-/- mice (on a CD1 background) were treated with LPS or vehicle for 24 h. LPS treatment resulted in histological evidence of lung injury, which was attenuated in the Ptgs2-/- mice. LPS treatment increased the mRNA levels for tumor necrosis factor-α, interleukin-10, and monocyte chemoattractant protein-1 in the lungs of WT mice, and the LPS-induced increases in these levels were attenuated in the Ptgs2-/- mice. The protein levels of active caspase-3 and caspase-9 were lower in the LPS-treated lungs of Ptgs2-/- mice than in LPS-treated WT mice, as were the number of terminal deoxynucleotide transferase dUTP nick end labeling-positive cells in lung sections. LPS exposure resulted in a greater lung wet-to-dry weight ratio (W/D) in WT mice, suggestive of pulmonary edema, while in LPS-treated Ptgs2-/- mice, the W/D was not different from controls and less than in LPS-treated WT mice. These results demonstrate that COX-2 is involved in the inflammatory response to LPS and suggest that COX-2 not only acts as a downstream participant in the inflammatory response, but also acts as a regulator of the inflammatory response likely through a feed-forward mechanism following LPS stimulation.


Assuntos
Lesão Pulmonar Aguda/prevenção & controle , Apoptose , Ciclo-Oxigenase 2/deficiência , Pulmão/enzimologia , Pneumonia/prevenção & controle , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/enzimologia , Lesão Pulmonar Aguda/patologia , Animais , Caspase 3/metabolismo , Caspase 9/metabolismo , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Ciclo-Oxigenase 2/genética , Modelos Animais de Doenças , Feminino , Interleucina-10/genética , Interleucina-10/metabolismo , Lipopolissacarídeos , Pulmão/patologia , Masculino , Camundongos Knockout , Pneumonia/induzido quimicamente , Pneumonia/enzimologia , Pneumonia/patologia , Transdução de Sinais , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
7.
Am J Obstet Gynecol ; 227(2): 275.e1-275.e14, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35189092

RESUMO

BACKGROUND: Biochemical cervical change during labor is not well understood, in part, because of a dearth of technologies capable of safely probing the pregnant cervix in vivo. The need for such a technology is 2-fold: (1) to gain a mechanistic understanding of the cervical ripening and dilation process and (2) to provide an objective method for evaluating the cervical state to guide clinical decision-making. Raman spectroscopy demonstrates the potential to meet this need, as it is a noninvasive optical technique that can sensitively detect alterations in tissue components, such as extracellular matrix proteins, lipids, nucleic acids, and blood, which have been previously established to change during the cervical remodeling process. OBJECTIVE: We sought to demonstrate that Raman spectroscopy can longitudinally monitor biochemical changes in the laboring cervix to identify spectral markers of impending parturition. STUDY DESIGN: Overall, 30 pregnant participants undergoing either spontaneous or induced labor were recruited. The Raman spectra were acquired in vivo at 4-hour intervals throughout labor until rupture of membranes using a Raman system with a fiber-optic probe. Linear mixed-effects models were used to determine significant (P<.05) changes in peak intensities or peak ratios as a function of time to delivery in the study population. A nonnegative least-squares biochemical model was used to extract the changing contributions of specific molecule classes over time. RESULTS: We detected multiple biochemical changes during labor, including (1) significant decreases in Raman spectral features associated with collagen and other extracellular matrix proteins (P=.0054) attributed to collagen dispersion, (2) an increase in spectral features associated with blood (P=.0372), and (3) an increase in features indicative of lipid-based molecules (P=.0273). The nonnegative least-squares model revealed a decrease in collagen contribution with time to delivery, an increase in blood contribution, and a change in lipid contribution. CONCLUSION: Our findings have demonstrated that in vivo Raman spectroscopy is sensitive to multiple biochemical remodeling changes in the cervix during labor. Furthermore, in vivo Raman spectroscopy may be a valuable noninvasive tool for objectively evaluating the cervix to potentially guide clinical management of labor.


Assuntos
Colo do Útero , Análise Espectral Raman , Maturidade Cervical , Colo do Útero/diagnóstico por imagem , Colágeno/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Feminino , Humanos , Lipídeos , Gravidez , Análise Espectral Raman/métodos
8.
Pediatr Res ; 87(6): 991-997, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31816622

RESUMO

BACKGROUND: Indomethacin treatment for patent ductus arteriosus (PDA) is associated with acute kidney injury (AKI). Fenoldopam, a dopamine (DA) DA1-like receptor agonist dilates the renal vasculature and may preserve renal function during indomethacin treatment. However, limited information exists on DA receptor-mediated signaling in the ductus and fenoldopam may prevent ductus closure given its vasodilatory nature. METHODS: DA receptor expression in CD-1 mouse vessels was analyzed by qPCR and immunohistochemistry. Concentration-response curves were established using pressure myography. Pretreatment with SCH23390 (DA1-like receptor antagonist), phentolamine (α -adrenergic receptor antagonist) or indomethacin addressed mechanisms for DA-induced changes. Fenoldopam's effects on postnatal ductus closure were evaluated in vivo. RESULTS: DA1 receptors were expressed equally in ductus and aorta. High-dose DA induced modest vasoconstriction under newborn O2 conditions. Phentolamine inhibited DA-induced constriction, while SCH23390 augmented constriction, consistent with a vasodilatory role for DA1 receptors. Despite this, fenoldopam had little effect on ductus tone nor indomethacin- or O2-induced constriction and did not impair postnatal closure in vivo. CONCLUSION(S): DA receptors are present in the ductus but have limited physiologic effects. DA-induced ductus vasoconstriction is mediated via α-adrenergic pathways. The absence of DA1-mediated impairment of ductus closure supports the study of potential role for fenoldopam during PDA treatment.


Assuntos
Agonistas de Dopamina/farmacologia , Dopamina/metabolismo , Permeabilidade do Canal Arterial/tratamento farmacológico , Canal Arterial/efeitos dos fármacos , Fenoldopam/farmacologia , Receptores de Dopamina D1/agonistas , Vasoconstrição/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Animais , Canal Arterial/metabolismo , Canal Arterial/fisiopatologia , Permeabilidade do Canal Arterial/metabolismo , Permeabilidade do Canal Arterial/fisiopatologia , Feminino , Indometacina/toxicidade , Camundongos , Oxigênio/toxicidade , Gravidez , Receptores de Dopamina D1/metabolismo , Transdução de Sinais
10.
Pharmacol Res ; 146: 104268, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31078743

RESUMO

Novel therapeutic regulators of uterine contractility are needed to manage preterm labor, induce labor and control postpartum hemorrhage. Therefore, we previously developed a high-throughput assay for large-scale screening of small molecular compounds to regulate calcium-mobilization in primary mouse uterine myometrial cells. The goal of this study was to select the optimal myometrial cells for our high-throughput drug discovery assay, as well as determine the similarity or differences of myometrial cells to vascular smooth muscle cells (VSMCs)-the most common off-target of current myometrial therapeutics. Molecular and pharmacological assays were used to compare myometrial cells from four sources: primary cells isolated from term pregnant human and murine myometrium, immortalized pregnant human myometrial (PHM-1) cells and immortalized non-pregnant human myometrial (hTERT-HM) cells. In addition, myometrial cells were compared to vascular SMCs. We found that the transcriptome profiles of hTERT-HM and PHM1 cells were most similar (r = 0.93 and 0.90, respectively) to human primary myometrial cells. Comparative transcriptome profiling of primary human myometrial transcriptome and VSMCs revealed 498 upregulated (p ≤ 0.01, log2FC≥1) genes, of which 142 can serve as uterine-selective druggable targets. In the high-throughput Ca2+-assay, PHM1 cells had the most similar response to primary human myometrial cells in OT-induced Ca2+-release (Emax = 195% and 143%, EC50 = 30 nM and 120 nM, respectively), while all sources of myometrial cells showed excellent and similar robustness and reproducibility (Z' = 0.52 to 0.77). After testing a panel of 61 compounds, we found that the stimulatory and inhibitory responses of hTERT-HM cells were highly-correlated (r = 0.94 and 0.95, respectively) to human primary cells. Moreover, ten compounds were identified that displayed uterine-selectivity (≥5-fold Emax or EC50 compared to VSMCs). Collectively, this study found that hTERT-HM cells exhibited the most similarity to primary human myometrial cells and, therefore, is an optimal substitute for large-scale screening to identify novel therapeutic regulators of myometrial contractility. Moreover, VSMCs can serve as an important counter-screening tool to assess uterine-selectivity of targets and drugs given the similarity observed in the transcriptome and response to compounds.


Assuntos
Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , Miométrio/citologia , Adolescente , Adulto , Animais , Células Cultivadas , Feminino , Humanos , Camundongos , Pessoa de Meia-Idade , Gravidez , Transcriptoma , Adulto Jovem
11.
Biol Reprod ; 99(5): 922-937, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29733339

RESUMO

Preterm birth affects approximately 1 out of every 10 births in the United States, leading to high rates of mortality and long-term negative health consequences. To investigate the mechanisms leading to preterm birth so as to develop prevention strategies, researchers have developed numerous mouse models of preterm birth. However, the lack of standard definitions for preterm birth in mice limits our field's ability to compare models and make inferences about preterm birth in humans. In this review, we discuss numerous mouse preterm birth models, propose guidelines for experiments and reporting, and suggest markers that can be used to assess whether pups are premature or mature. We argue that adoption of these recommendations will enhance the utility of mice as models for preterm birth.


Assuntos
Trabalho de Parto Prematuro/fisiopatologia , Animais , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Gravidez
12.
Reproduction ; 155(5): 447-456, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29500186

RESUMO

In mouse models used to study parturition or pre-clinical therapeutic testing, measurement of uterine contractions is limited to either ex vivo isometric tension or operative intrauterine pressure (IUP). The goal of this study was to: (1) develop a method for transcervical insertion of a pressure catheter to measure in vivo intrauterine contractile pressure during mouse pregnancy, (2) determine whether this method can be utilized numerous times in a single mouse pregnancy without affecting the timing of delivery or fetal outcome and (3) compare the in vivo contractile activity between mouse models of term and preterm labor (PTL). Visualization of the cervix allowed intrauterine pressure catheter (IUPC) placement into anesthetized pregnant mice (plug = day 1, delivery = day 19.5). The amplitude, frequency, duration and area under the curve (AUC) of IUP was lowest on days 16-18, increased significantly (P < 0.05) on the morning of day 19 and reached maximal levels during by the afternoon of day 19 and into the intrapartum period. An AUC threshold of 2.77 mmHg discriminated between inactive labor (day 19 am) and active labor (day 19 pm and intrapartum period). Mice examined on a single vs every experimental timepoint did not have significantly different IUP, timing of delivery, offspring number or fetal/neonatal weight. The IUP was significantly greater in LPS-treated and RU486-treated mouse models of PTL compared to time-matched vehicle control mice. Intrapartum IUP was not significantly different between term and preterm mice. We conclude that utilization of a transcervical IUPC allows sensitive assessment of in vivo uterine contractile activity and labor progression in mouse models without the need for operative approaches.


Assuntos
Catéteres , Parto/fisiologia , Nascimento Prematuro/fisiopatologia , Contração Uterina/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Lipopolissacarídeos/farmacologia , Camundongos , Mifepristona/farmacologia , Parto/efeitos dos fármacos , Gravidez , Pressão , Contração Uterina/efeitos dos fármacos
13.
Am J Obstet Gynecol ; 218(5): 528.e1-528.e18, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29410109

RESUMO

BACKGROUND: The cervix must undergo significant biochemical remodeling to allow for successful parturition. This process is not fully understood, especially in instances of spontaneous preterm birth. In vivo Raman spectroscopy is an optical technique that can be used to investigate the biochemical composition of tissue longitudinally and noninvasively in human beings, and has been utilized to measure physiology and disease states in a variety of medical applications. OBJECTIVE: The purpose of this study is to measure in vivo Raman spectra of the cervix throughout pregnancy in women, and to identify biochemical markers that change with the preparation for delivery and postpartum repair. STUDY DESIGN: In all, 68 healthy pregnant women were recruited. Raman spectra were measured from the cervix of each patient monthly in the first and second trimesters, weekly in the third trimester, and at the 6-week postpartum visit. Raman spectra were measured using an in vivo Raman system with an optical fiber probe to excite the tissue with 785 nm light. A spectral model was developed to highlight spectral regions that undergo the most changes throughout pregnancy, which were subsequently used for identifying Raman peaks for further analysis. These peaks were analyzed longitudinally to determine if they underwent significant changes over the course of pregnancy (P < .05). Finally, 6 individual components that comprise key biochemical constituents of the human cervix were measured to extract their contributions in spectral changes throughout pregnancy using a linear combination method. Patient factors including body mass index and parity were included as variables in these analyses. RESULTS: Raman peaks indicative of extracellular matrix proteins (1248 and 1254 cm-1) significantly decreased (P < .05), while peaks corresponding to blood (1233 and 1563 cm-1) significantly increased (P < .0005) in a linear manner throughout pregnancy. In the postpartum cervix, significant increases in peaks corresponding to actin (1003, 1339, and 1657 cm-1) and cholesterol (1447 cm-1) were observed when compared to late gestation, while signatures from blood significantly decreased. Postpartum actin signals were significantly higher than early pregnancy, whereas extracellular matrix proteins and water signals were significantly lower than early weeks of gestation. Parity had a significant effect on blood and extracellular matrix protein signals, with nulliparous patients having significant increases in blood signals throughout pregnancy, and higher extracellular matrix protein signals in early pregnancy compared to patients with prior pregnancies. Body mass index significantly affected actin signal contribution, with low body mass index patients showing decreasing actin contribution throughout pregnancy and high body mass index patients demonstrating increasing actin signals. CONCLUSION: Raman spectroscopy was successfully used to biochemically monitor cervical remodeling in pregnant women during prenatal visits. This foundational study has demonstrated sensitivity to known biochemical dynamics that occur during cervical remodeling, and identified patient variables that have significant effects on Raman spectra throughout pregnancy. Raman spectroscopy has the potential to improve our understanding of cervical maturation, and be used as a noninvasive preterm birth risk assessment tool to reduce the incidence, morbidity, and mortality caused by preterm birth.


Assuntos
Colo do Útero/fisiologia , Parto/fisiologia , Primeiro Trimestre da Gravidez/fisiologia , Segundo Trimestre da Gravidez/fisiologia , Terceiro Trimestre da Gravidez/fisiologia , Análise Espectral Raman , Adulto , Feminino , Voluntários Saudáveis , Humanos , Período Pós-Parto , Gravidez
14.
Pediatr Res ; 84(3): 458-465, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29976969

RESUMO

BACKGROUND: Although studies involving preterm infants ≤34 weeks gestation report a decreased incidence of patent ductus arteriosus after antenatal betamethasone, studies involving younger gestation infants report conflicting results. METHODS: We used preterm baboons, mice, and humans (≤276/7 weeks gestation) to examine betamethasone's effects on ductus gene expression and constriction both in vitro and in vivo. RESULTS: In mice, betamethasone increased the sensitivity of the premature ductus to the contractile effects of oxygen without altering the effects of other contractile or vasodilatory stimuli. Betamethasone's effects on oxygen sensitivity could be eliminated by inhibiting endogenous prostaglandin/nitric oxide signaling. In mice and baboons, betamethasone increased the expression of several developmentally regulated genes that mediate oxygen-induced constriction (K+ channels) and inhibit vasodilator signaling (phosphodiesterases). In human infants, betamethasone increased the rate of ductus constriction at all gestational ages. However, in infants born ≤256/7 weeks gestation, betamethasone's contractile effects were only apparent when prostaglandin signaling was inhibited, whereas at 26-27 weeks gestation, betamethasone's contractile effects were apparent even in the absence of prostaglandin inhibitors. CONCLUSIONS: We speculate that betamethasone's contractile effects may be mediated through genes that are developmentally regulated. This could explain why betamethasone's effects vary according to the infant's developmental age at birth.


Assuntos
Betametasona/uso terapêutico , Permeabilidade do Canal Arterial/tratamento farmacológico , Canal Arterial/efeitos dos fármacos , Animais , Ecocardiografia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Recém-Nascido Prematuro , Exposição Materna , Camundongos , Oxigênio/metabolismo , Papio , Reação em Cadeia da Polimerase , Prostaglandinas/metabolismo
15.
Analyst ; 143(24): 6049-6060, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30420993

RESUMO

A fiber optic probe-based Raman spectroscopy system using a single laser module with two excitation wavelengths, at 680 and 785 nm, has been developed for measuring the fingerprint and high wavenumber regions using a single detector. This system is simpler and less expensive than previously reported configurations of combined fingerprint and high wavenumber Raman systems, and its probe-based implementation facilitates numerous in vivo applications. The high wavenumber region of the Raman spectrum ranges from 2800-3800 cm-1 and contains valuable information corresponding to the molecular vibrations of proteins, lipids, and water, which is complimentary to the biochemical signatures found in the fingerprint region (800-1800 cm-1), which probes DNA, lipids, and proteins. The efficacy of the system is demonstrated by tracking changes in water content in tissue-mimicking phantoms, where Voigtian decomposition of the high wavenumber water peak revealed a correlation between the water content and type of water-tissue interactions in the samples. This dual wavelength system was then used for in vivo assessment of cervical remodeling during mouse pregnancy, a physiologic process with known changes in tissue hydration. The system shows that Raman spectroscopy is sensitive to changes in collagen content in the fingerprint region and hydration state in the high wavenumber region, which was verified using an ex vivo comparison of wet and dry weight. Simultaneous fingerprint and high wavenumber Raman spectroscopy will allow precise in vivo quantification of tissue water content in the high wavenumber region, paired with the high biochemical specificity of the fingerprint region.


Assuntos
Análise Espectral Raman/métodos , Água/análise , Animais , Colo do Útero/metabolismo , Colágeno/química , Feminino , Gelatina/química , Camundongos , Imagens de Fantasmas , Gravidez , Análise Espectral Raman/instrumentação
16.
Proc Natl Acad Sci U S A ; 112(40): 12366-71, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26392530

RESUMO

Cyclooxygenase-2 (COX-2) oxygenates arachidonic acid (AA) and its ester analog, 2-arachidonoylglycerol (2-AG), to prostaglandins (PGs) and prostaglandin glyceryl esters (PG-Gs), respectively. Although the efficiency of oxygenation of these substrates by COX-2 in vitro is similar, cellular biosynthesis of PGs far exceeds that of PG-Gs. Evidence that the COX enzymes are functional heterodimers suggests that competitive interaction of AA and 2-AG at the allosteric site of COX-2 might result in differential regulation of the oxygenation of the two substrates when both are present. Modulation of AA levels in RAW264.7 macrophages uncovered an inverse correlation between cellular AA levels and PG-G biosynthesis. In vitro kinetic analysis using purified protein demonstrated that the inhibition of 2-AG oxygenation by high concentrations of AA far exceeded the inhibition of AA oxygenation by high concentrations of 2-AG. An unbiased systems-based mechanistic model of the kinetic data revealed that binding of AA or 2-AG at the allosteric site of COX-2 results in a decreased catalytic efficiency of the enzyme toward 2-AG, whereas 2-AG binding at the allosteric site increases COX-2's efficiency toward AA. The results suggest that substrates interact with COX-2 via multiple potential complexes involving binding to both the catalytic and allosteric sites. Competition between AA and 2-AG for these sites, combined with differential allosteric modulation, gives rise to a complex interplay between the substrates, leading to preferential oxygenation of AA.


Assuntos
Ácido Araquidônico/metabolismo , Ácidos Araquidônicos/metabolismo , Ciclo-Oxigenase 2/metabolismo , Endocanabinoides/metabolismo , Glicerídeos/metabolismo , Prostaglandinas/metabolismo , Algoritmos , Regulação Alostérica , Sítio Alostérico , Animais , Ligação Competitiva , Domínio Catalítico , Linhagem Celular , Simulação por Computador , Ciclo-Oxigenase 2/química , Cinética , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Oxirredução , Ligação Proteica , Multimerização Proteica , Células Sf9 , Spodoptera , Especificidade por Substrato , Zimosan/farmacologia
17.
J Am Acad Dermatol ; 76(4): e111-e112, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29081565

RESUMO

A 2240 gram boy was born at 33.2 weeks gestation with nonblanching, deeply erythematous plaques and papules on the back, flanks, and scalp (Figure 1). His mother was GBS positive and on antibiotic suppression for prior cutaneous MRSA and urinary tract infections. Intrapartum intravenous Penicillin G was administered, and the amniotic sac was artificially ruptured 4 hours prior to delivery to facilitate labor. The delivery was uncomplicated without concern for chorioamnionitis, but the patient initially required CPAP for respiratory distress with 1-minute and 5-minute Apgar scores of 7 and 8, respectively. A skin punch biopsy is shown (Figure 2).


Assuntos
Antibacterianos/uso terapêutico , Impetigo/patologia , Recém-Nascido Prematuro , Complicações Infecciosas na Gravidez/tratamento farmacológico , Infecções Estreptocócicas/transmissão , Índice de Apgar , Biópsia por Agulha , Feminino , Seguimentos , Idade Gestacional , Humanos , Imuno-Histoquímica , Impetigo/congênito , Impetigo/tratamento farmacológico , Recém-Nascido , Masculino , Gravidez , Complicações Infecciosas na Gravidez/microbiologia , Síndrome do Desconforto Respiratório do Recém-Nascido/fisiopatologia , Síndrome do Desconforto Respiratório do Recém-Nascido/terapia , Infecções Estreptocócicas/tratamento farmacológico , Resultado do Tratamento
18.
Am J Physiol Heart Circ Physiol ; 311(3): H572-81, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27371685

RESUMO

Use of selective serotonin reuptake inhibitors (SSRIs) is common during pregnancy. Fetal exposure to SSRIs is associated with persistent pulmonary hypertension of the newborn (PPHN); however, a direct link between the two has yet to be established. Conversely, it is well known that PPHN can be caused by premature constriction of the ductus arteriosus (DA), a fetal vessel connecting the pulmonary and systemic circulations. We hypothesized that SSRIs could induce in utero DA constriction. Using isolated vessels and whole-animal models, we sought to determine the effects of two commonly prescribed SSRIs, fluoxetine and sertraline, on the fetal mouse DA. Cannulated vessel myography studies demonstrated that SSRIs caused concentration-dependent DA constriction and made vessels less sensitive to prostaglandin-induced dilation. Moreover, in vivo studies showed that SSRI-exposed mice had inappropriate DA constriction in utero. Taken together, these findings establish that SSRIs promote fetal DA constriction and provide a potential mechanism by which SSRIs could contribute to PPHN.


Assuntos
Canal Arterial/efeitos dos fármacos , Fluoxetina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Sertralina/farmacologia , Vasoconstrição/efeitos dos fármacos , Animais , Aorta/metabolismo , Canal Arterial/metabolismo , Feminino , Imuno-Histoquímica , Camundongos , Miografia , Síndrome da Persistência do Padrão de Circulação Fetal , Gravidez , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Serotonina/genética , Receptores de Serotonina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
J Pediatr ; 167(5): 1033-41.e2, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26265282

RESUMO

OBJECTIVE: To identify genes affected by advancing gestation and racial/ethnic origin in human ductus arteriosus (DA). STUDY DESIGN: We collected 3 sets of DA tissue (n = 93, n = 89, n = 91; total = 273 fetuses) from second trimester pregnancies. We examined four genes, with DNA polymorphisms that distribute along racial lines, to identify "Caucasian" and "non-Caucasian" DA. We used real time polymerase chain reaction to measure RNA expression of 48 candidate genes involved in functional closure of the DA, and used multivariable regression analyses to examine the relationships between advancing gestation, "non-Caucasian" race, and gene expression. RESULTS: Mature gestation and non-Caucasian race are significant predictors for identifying infants who will close their patent DA when treated with indomethacin. Advancing gestation consistently altered gene expression in pathways involved with oxygen-induced constriction (eg, calcium-channels, potassium-channels, and endothelin signaling), contractile protein maturation, tissue remodeling, and prostaglandin and nitric oxide signaling in all 3 tissue sets. None of the pathways involved with oxygen-induced constriction appeared to be altered in "non-Caucasian" DA. Two genes, SLCO2A1 and NOS3, (involved with prostaglandin reuptake/metabolism and nitric oxide production, respectively) were consistently decreased in "non-Caucasian" DA. CONCLUSIONS: Prostaglandins and nitric oxide are the most important vasodilators opposing DA closure. Indomethacin inhibits prostaglandin production, but not nitric oxide production. Because decreased SLCO2A1 and NOS3 expression can lead to increased prostaglandin and decreased nitric oxide concentrations, we speculate that prostaglandin-mediated vasodilation may play a more dominant role in maintaining the "non-Caucasian" patent DA, making it more likely to close when inhibited by indomethacin.


Assuntos
Permeabilidade do Canal Arterial/etnologia , Permeabilidade do Canal Arterial/genética , Canal Arterial/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Aorta/patologia , DNA , Canal Arterial/embriologia , Permeabilidade do Canal Arterial/tratamento farmacológico , Feminino , Genótipo , Humanos , Indometacina/uso terapêutico , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Oxigênio/metabolismo , Reação em Cadeia da Polimerase , Polimorfismo Genético , Gravidez , Segundo Trimestre da Gravidez , Grupos Raciais , Análise de Regressão , Transdução de Sinais , Fatores de Tempo
20.
J Mol Cell Cardiol ; 69: 88-96, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24508561

RESUMO

Vascular smooth muscle cells (VSMCs) are derived from distinct embryonic origins. Vessels originating from differing smooth muscle cell populations have distinct vascular and pathological properties involving calcification, atherosclerosis, and structural defects such as aneurysm and coarctation. We hypothesized that domains within a single vessel, such as the aorta, vary in phenotype based on embryonic origin. Gene profiling and myographic analyses demonstrated that embryonic ascending and descending aortic domains exhibited distinct phenotypes. In vitro analyses demonstrated that VSMCs from each region were dissimilar in terms of cytoskeletal and migratory properties, and retention of different gene expression patterns. Using the same analysis, we found that these same two domains are indistinguishable in the adult vessel. Our data demonstrate that VSMCs from different embryonic origins are functionally distinct in the embryonic mouse, but converge to assume a common phenotype in the aorta of healthy adults. These findings have fundamental implications for aortic development, function and disease progression.


Assuntos
Aorta/embriologia , Diferenciação Celular , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Variação Genética , Músculo Liso Vascular/embriologia , Animais , Aorta/metabolismo , Biomarcadores/metabolismo , Western Blotting , Células Cultivadas , Feminino , Perfilação da Expressão Gênica , Masculino , Camundongos , Músculo Liso Vascular/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa