Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 24(12): 2068-2079, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37919524

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA generally becomes undetectable in upper airways after a few days or weeks postinfection. Here we used a model of viral infection in macaques to address whether SARS-CoV-2 persists in the body and which mechanisms regulate its persistence. Replication-competent virus was detected in bronchioalveolar lavage (BAL) macrophages beyond 6 months postinfection. Viral propagation in BAL macrophages occurred from cell to cell and was inhibited by interferon-γ (IFN-γ). IFN-γ production was strongest in BAL NKG2r+CD8+ T cells and NKG2Alo natural killer (NK) cells and was further increased in NKG2Alo NK cells after spike protein stimulation. However, IFN-γ production was impaired in NK cells from macaques with persisting virus. Moreover, IFN-γ also enhanced the expression of major histocompatibility complex (MHC)-E on BAL macrophages, possibly inhibiting NK cell-mediated killing. Macaques with less persisting virus mounted adaptive NK cells that escaped the MHC-E-dependent inhibition. Our findings reveal an interplay between NK cells and macrophages that regulated SARS-CoV-2 persistence in macrophages and was mediated by IFN-γ.


Assuntos
COVID-19 , Interferon gama , Animais , Interferon gama/metabolismo , SARS-CoV-2/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Macrófagos Alveolares/metabolismo , Células Matadoras Naturais/metabolismo , Pulmão/metabolismo , Macaca/metabolismo
2.
Nat Immunol ; 16(9): 927-32, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26193080

RESUMO

Natural killer (NK) cells have traditionally been considered nonspecific components of innate immunity, but recent studies have shown features of antigen-specific memory in mouse NK cells. However, it has remained unclear whether this phenomenon also exists in primates. We found that splenic and hepatic NK cells from SHIV(SF162P3)-infected and SIV(mac251)-infected macaques specifically lysed Gag- and Env-pulsed dendritic cells in an NKG2-dependent fashion, in contrast to NK cells from uninfected macaques. Moreover, splenic and hepatic NK cells from Ad26-vaccinated macaques efficiently lysed antigen-matched but not antigen-mismatched targets 5 years after vaccination. These data demonstrate that robust, durable, antigen-specific NK cell memory can be induced in primates after both infection and vaccination, and this finding could be important for the development of vaccines against HIV-1 and other pathogens.


Assuntos
Células Dendríticas/imunologia , HIV-1/imunologia , Células Matadoras Naturais/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Vacinas contra a AIDS/imunologia , Animais , Memória Imunológica , Células Matadoras Naturais/metabolismo , Fígado/citologia , Fígado/imunologia , Macaca mulatta , Receptores Semelhantes a Lectina de Células NK/metabolismo , Baço/citologia , Baço/imunologia
3.
PLoS Pathog ; 20(5): e1012223, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38739675

RESUMO

Natural killer-like B (NKB) cells are unique innate immune cells expressing both natural killer (NK) and B cell receptors. As first responders to infection, they secrete IL-18 to induce a critical cascade of innate and adaptive immune cell infiltration and activation. However, limited research exists on the role of NKB cells in homeostasis and infection, largely due to incomplete and erroneous evaluations. To fill this knowledge gap, we investigated the expression of signaling and trafficking proteins, and the in situ localization and transcriptome of naïve NKB cells compared to conventionally-defined NK and B cells, as well as modulations of these cells in SIV infection. Intracellular signaling proteins and trafficking markers were expressed differentially on naïve NKB cells, with high expression of CD62L and Syk, and low expression of CD69, α4ß7, FcRg, Zap70, and CD3z, findings which were more similar to B cells than NK cells. CD20+NKG2a/c+ NKB cells were identified in spleen, mesenteric lymph nodes (MLN), colon, jejunum, and liver of naïve rhesus macaques (RM) via tissue imaging, with NKB cell counts concentrated in spleen and MLN. For the first time, single cell RNA sequencing (scRNAseq), including B cell receptor (BCR) sequencing, of sorted NKB cells confirmed that NKB cells are unique. Transcriptomic analysis of naïve splenic NKB cells by scRNAseq showed that NKB cells undergo somatic hypermutation and express Ig receptors, similar to B cells. While only 15% of sorted NKB cells showed transcript expression of both KLRC1 (NKG2A) and MS4A1 (CD20) genes, only 5% of cells expressed KLRC1, MS4A1, and IgH/IgL transcripts. We observed expanded NKB frequencies in RM gut and buccal mucosa as early as 14 and 35 days post-SIV infection, respectively. Further, mucosal and peripheral NKB cells were associated with colorectal cytokine milieu and oral microbiome changes, respectively. Our studies indicate that NKB cells gated on CD3-CD14-CD20+NKG2A/C+ cells were inclusive of transcriptomically conventional B and NK cells in addition to true NKB cells, confounding accurate phenotyping and frequency recordings that could only be resolved using genomic techniques. Although NKB cells were clearly elevated during SIV infection and associated with inflammatory changes during infection, further interrogation is necessary to acurately identify the true phenotype and significance of NKB cells in infection and inflammation.


Assuntos
Imunidade Inata , Células Matadoras Naturais , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/imunologia , Células Matadoras Naturais/imunologia , Linfócitos B/imunologia
4.
PLoS Pathog ; 19(9): e1011629, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37669308

RESUMO

Despite their importance, natural killer (NK) cell responses are frequently dysfunctional during human immunodeficiency virus-1 (HIV-1) and simian immunodeficiency virus (SIV) infections, even irrespective of antiretroviral therapies, with poorly understood underlying mechanisms. NK cell surface receptor modulation in lentivirus infection has been extensively studied, but a deeper interrogation of complex cell signaling is mostly absent, largely due to the absence of any comprehensive NK cell signaling assay. To fill this knowledge gap, we developed a novel multiplex signaling analysis to broadly assess NK cell signaling. Using this assay, we elucidated that NK cells exhibit global signaling reduction from CD16 both in people living with HIV-1 (PLWH) and SIV-infected rhesus macaques. Intriguingly, antiretroviral treatment did not fully restore diminished CD16 signaling in NK cells from PLWH. As a putative mechanism, we demonstrated that NK cells increased surface ADAM17 expression via elevated plasma IL-18 levels during HIV-1 infection, which in turn reduced surface CD16 downregulation. We also illustrated that CD16 expression and signaling can be restored by ADAM17 perturbation. In summary, our multiplex NK cell signaling analysis delineated unique NK cell signaling perturbations specific to lentiviral infections, resulting in their dysfunction. Our analysis also provides mechanisms that will inform the restoration of dysregulated NK cell functions, offering potential insights for the development of new NK cell-based immunotherapeutics for HIV-1 disease.


Assuntos
HIV-1 , Infecções por Lentivirus , Animais , Humanos , Regulação para Baixo , Interleucina-18 , Macaca mulatta , Células Matadoras Naturais , Transdução de Sinais , Proteína ADAM17
5.
J Virol ; 97(1): e0151922, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36511699

RESUMO

Natural killer (NK) cells are potent effector cells of the innate immune system possessing both cytotoxic and immunoregulatory capabilities, which contribute to their crucial role in controlling human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections. However, despite significant evidence for NK cell modulation of HIV disease, their specific contribution to transmission and control of acute infection remains less clear. To elucidate the contribution of NK cells during acute SIV infection, we performed an acute necropsy study, where rhesus macaques (RM) were subjected to preinfection depletion of systemic NK cells using established methods of IL-15 neutralization, followed by subsequent challenge with barcoded SIVmac239X. Our study showed that depletion was highly effective, resulting in near total ablation of all NK cell subsets in blood, liver, oral, and rectal mucosae, and lymph nodes (LN) that persisted through the duration of the study. Meanwhile, frequencies and phenotypes of T cells remained virtually unchanged, indicating that our method of NK cell depletion had minimal off-target effects. Importantly, NK cell-depleted RM demonstrated an early and sustained 1 to 2 log increase in viremia over controls, but sequence analysis suggested no difference in the number of independent transmission events. Acute bulk, central memory (CM), and CCR5+ CD4+ T cell depletion was similar between experimental and control groups, while CD8+ T cell activation was higher in NK cell-depleted RM as measured by Ki67 and PD-1 expression. Using 27-plex Luminex analyses, we also found modestly increased inflammatory cytokines in NK cell-depleted RM compared to control animals. In the effort to determine the impact of NK cells on HIV/SIV transmission and acute viremia, future studies will be necessary to better harness these cells for future viral therapies. Collectively, these data suggest NK cells are important modulators of lentivirus dissemination and disease but may not have the capacity to independently eliminate individual transmission events. IMPORTANCE Natural killer (NK) cells as major effector cells of the innate immune system can contribute significantly to human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) control. However, a specific role for NK cells in blocking lentivirus transmission remains incompletely clear. In this study, we depleted NK cells prior to challenge with a barcoded SIV. Importantly, our studied showed systemic NK cell depletion was associated with a significant increase in acute viremia, but did not impact the number of independent transmission events. Collectively, these data suggest NK cells are critical modulators of early lentivirus replication but may not regulate individual transmission events at mucosal portals of entry.


Assuntos
Células Matadoras Naturais , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Humanos , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Infecções por HIV , Células Matadoras Naturais/virologia , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/transmissão , Carga Viral , Viremia , Replicação Viral
6.
PLoS Pathog ; 16(8): e1008820, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32845937

RESUMO

The COVID-19 pandemic has caused more than 575,000 deaths worldwide as of mid-July 2020 and still continues globally unabated. Immune dysfunction and cytokine storm complicate the disease, which in turn leads to the question of whether stimulation or suppression of the immune system would curb the disease. Given the varied antiviral and regulatory functions of natural killer (NK) cells, they could be potent and powerful immune allies in this global fight against COVID-19. Unfortunately, there is somewhat limited knowledge of the role of NK cells in SARS-CoV-2 infections and even in the related SARS-CoV-1 and MERS-CoV infections. Several NK cell therapeutic options already exist in the treatment of tumor and other viral diseases and could be repurposed against COVID-19. In this review, we describe the current understanding and potential roles of NK cells and other Fc receptor (FcR) effector cells in SARS-CoV-2 infection, advantages of using animals to model COVID-19, and NK cell-based therapeutics that are being investigated for COVID-19 therapy.


Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Células Matadoras Naturais/imunologia , Pneumonia Viral/imunologia , Animais , COVID-19 , Infecções por Coronavirus/mortalidade , Infecções por Coronavirus/patologia , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/mortalidade , Citocinas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Pandemias , Pneumonia Viral/mortalidade , Pneumonia Viral/patologia , SARS-CoV-2
7.
Immunology ; 164(2): 348-357, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34037988

RESUMO

Granulocytes mediate broad immunoprotection through phagocytosis, extracellular traps, release of cytotoxic granules, antibody effector functions and recruitment of other immune cells against pathogens. However, descriptions of granulocytes in HIV infection and mucosal tissues are limited. Our goal was to characterize granulocyte subsets in systemic, mucosal and lymphoid tissues during lentiviral infection using the rhesus macaque (RM) model. Mononuclear cells from jejunum, colon, cervix, vagina, lymph nodes, spleen, liver and whole blood from experimentally naïve and chronically SHIVsf162p3-infected RM were analysed by microscopy and polychromatic flow cytometry. Granulocytes were identified using phenotypes designed specifically for RM: eosinophils-CD45+  CD66+  CD49d+ ; neutrophils-CD45+  CD66+  CD14+ ; and basophils-CD45+  CD123+  FcRε+ . Nuclear visualization with DAPI staining and surface marker images by ImageStream (cytometry/microscopy) further confirmed granulocytic phenotypes. Flow cytometric data showed that all RM granulocytes expressed CD32 (FcRγII) but did not express CD16 (FcRγIII). Additionally, constitutive expression of CD64 (FcRγI) on neutrophils and FcRε on basophils indicates the differential expression of Fc receptors on granulocyte subsets. Granulocytic subsets in naïve whole blood ranged from 25·4% to 81·5% neutrophils, 0·59% to 13·3% eosinophils and 0·059% to 1·8% basophils. Interestingly, elevated frequencies of circulating neutrophils, colorectal neutrophils and colorectal eosinophils were all observed in chronic lentiviral disease. Conversely, circulating basophils, jejunal eosinophils, vaginal neutrophils and vaginal eosinophils of SHIVsf162p3-infected RM declined in frequency. Overall, our data suggest modulation of granulocytes in chronic lentiviral infection, most notably in the gastrointestinal mucosae where a significant inflammation and disruption occurs in lentivirus-induced disease. Furthermore, granulocytes may migrate to inflamed tissues during infection and could serve as targets of immunotherapeutic intervention.


Assuntos
Granulócitos/imunologia , Infecções por Lentivirus/imunologia , Macaca mulatta/imunologia , Mucosa/imunologia , Animais , Basófilos/imunologia , Basófilos/virologia , Eosinófilos/imunologia , Eosinófilos/virologia , Citometria de Fluxo/métodos , Granulócitos/virologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , Contagem de Leucócitos/métodos , Mucosa/virologia , Neutrófilos/imunologia , Neutrófilos/virologia , Receptores de IgG/imunologia
8.
J Virol ; 94(5)2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31801861

RESUMO

Mother-to-child transmission of human immunodeficiency virus type 1 (HIV-1) via breastfeeding is responsible for nearly half of new infections of children with HIV. Although innate lymphoid cells (ILC) and natural killer (NK) cells are found throughout the oral mucosae, the effects of HIV/simian-human immunodeficiency virus (SHIV) in these tissues are largely unknown. To better understand the mechanics of postnatal transmission, we performed a comprehensive study of simian immunodeficiency virus (SIV)/SHIV-infected infant rhesus macaques (RM) and tracked changes in frequency, trafficking, and function of group 3 ILC (ILC3) and NK cells using polychromatic flow cytometry and cell stimulation assays in colon, tonsil, and oral lymph node samples. Infection led to a 3-fold depletion of ILC3 in the colon and an increase in the levels of NK cells in tonsils and oral lymph nodes. ILC3 and NK cells exhibited alterations in their trafficking repertoires as a result of infection, with increased expression of CD103 in colon NK cells and curtailment of CXCR3, and a significant decrease in α4ß7 expression in colon ILC3. SPICE analyses revealed that ILC3 and NK cells displayed distinct functional profiles by tissue in naive samples. Infection perturbed these profiles, with a nearly total loss of interleukin-22 (IL-22) production in the tonsil and colon; an increase in the levels of CD107a, gamma interferon (IFN-γ), and tumor necrosis factor alpha (TNF-α) from ILC3; and an increase in the levels of CD107a, macrophage inflammatory protein 1 beta (MIP-1ß), and TNF-α from NK cells. Collectively, these data reveal that lentivirus infection alters the frequencies, receptor repertoires, and functions of innate cells in the oral and gut mucosa of infants. Further study will be required to delineate the full extent of the effect that these changes have on oral and gut homeostasis, SHIV/SIV pathogenesis, and oral opportunistic disease.IMPORTANCE Vertical transmission of HIV from mother to child accounts for many of the new cases seen worldwide. There is currently no vaccine to mitigate this transmission, and there has been limited research on the effects that lentiviral infection has on the innate immune system in oral tissues of infected children. To fill this knowledge gap, our laboratory studied infant rhesus macaques to evaluate how acute SIV/SHIV infections impacted ILC3 and NK cells, which are immune cells critical for mucosal homeostasis and antimicrobial defense. Our data revealed that SIV/SHIV infection led to a depletion of ILC3 and an increase of NK cells and to a functional shift from a homeostatic to a multifunctional proinflammatory state. Taking the results together, we describe how lentiviral infection perturbs the oral and gastrointestinal mucosae of infant macaques through alterations of resident innate immune cells giving rise to chronic inflammation and potentially exacerbating morbidity and mortality in children living with HIV.


Assuntos
Imunidade Inata , Células Matadoras Naturais/imunologia , Macaca mulatta/virologia , Mucosa/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Trato Gastrointestinal , Infecções por HIV/imunologia , HIV-1/imunologia , Transmissão Vertical de Doenças Infecciosas , Interferon gama/imunologia , Interleucinas/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/transmissão , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Carga Viral , Interleucina 22
9.
Eur J Immunol ; 49(8): 1153-1166, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31016720

RESUMO

Cytokine-induced memory-like (CIML) NK cells are endowed with the capacity to mediate enhanced effector functions upon cytokine or activating receptor restimulation for several weeks following short-term preactivation with IL-12, IL-15, and IL-18. Promising results from a first-in-human clinical trial highlighted the clinical potential of CIML NK cells as adoptive immunotherapy for patients with hematologic malignancies. However, the mechanisms underlying CIML NK cell differentiation and increased functionality remain incompletely understood. Semaphorin 7A (SEMA7A) is a potent immunomodulator expressed in activated lymphocytes and myeloid cells. In this study, we show that SEMA7A is substantially upregulated on NK cells stimulated with cytokines, and specifically marks activated NK cells with a strong potential to release IFN-γ. In particular, preactivation of NK cells with IL-12+IL-15+IL-18 resulted in greater than tenfold upregulation of SEMA7A and enhanced expression of the ligand for SEMA7A, integrin-ß1, on CIML NK cells. Strikingly, preactivation in the presence of antibodies targeting SEMA7A lead to significantly decreased IFN-γ production following restimulation. These results imply a novel mechanism by which cytokine-enhanced SEMA7A/integrin-ß1 interaction promotes CIML NK cell differentiation and maintenance of increased functionality. Our data suggest that targeting SEMA7A/integrin-ß1 signaling might provide a novel immunotherapeutic approach to potentiate antitumor activity of CIML NK cells.


Assuntos
Antígenos CD/metabolismo , Memória Imunológica , Células Matadoras Naturais/imunologia , Neoplasias/imunologia , Semaforinas/metabolismo , Antígenos CD/genética , Células Cultivadas , Citocinas/metabolismo , Citometria de Fluxo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Humanos , Vigilância Imunológica , Imunomodulação , Integrina beta1/metabolismo , Interferon gama/metabolismo , Ativação Linfocitária , Ligação Proteica , Semaforinas/genética , Regulação para Cima
10.
J Virol ; 93(16)2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31167916

RESUMO

Recently, we and others have shown that natural killer (NK) cells exhibit memory-like recall responses against cytomegalovirus (CMV) and human immunodeficiency/virus simian immunodeficiency virus (HIV/SIV) infections. Although the mechanism(s) have not been fully delineated, several groups have shown that the activating receptor NKG2C is elevated on NK cells in the context of rhesus CMV (rhCMV) or human CMV (hCMV) infections. CD94, which heterodimerizes with NKG2C is also linked to adaptive NK cell responses. Because nonhuman primates (NHP) play a crucial role in modeling HIV (SIV) infections, it is crucial to be able to assess and characterize the NKG2 family in NHP. Unfortunately, it is not possible to detect CD94 using commercially available antibodies in NHP. Our work, a first for NHP, has focused on developing RNA flow cytometry using mRNA transcripts as proxies distinguishing NKG2C from NKG2A. We have expanded the application of this technology and here we show the first characterization of CD94+ (KLRD1+) NK cells in NHP using multiparametric RNA flow cytometry. Peripheral blood mononuclear cells from naive and matched acutely (n = 4) or chronically (n = 12) SIV-infected rhesus macaques were analyzed by flow cytometry using commercially available antibodies, determining expression of transcripts for NKG2A, NKG2C, and CD94 (KLRC1, KLRC2, and KLRD1, respectively) on NK cells using RNA flow cytometry. Our data show that KLRC1+/- KLRC2+ KLRD1+ NK cells decrease following chronic, but not acute, infection with SIV. This approach will allow us to investigate the kinetics of infection and NK memory formation and will further improve our understanding of basic NK cell biology, especially in the context of SIV infection.IMPORTANCE Nonhuman primates play a crucial role in approximating human biology and many diseases that are difficult, if not impossible, to achieve in other animal models, notably HIV. Current advances in adaptive NK cell research positions us to address fundamental deficiencies in our fight against infection and disease at the earliest moments after infection or substantially earlier in disease progression. We show here that we can identify specific NK cell subpopulations that are modulated following chronic, but not acute, SIV infection. The ability to identify these subsets more precisely will inform therapeutic and vaccine strategies targeting an optimized NK cell response.


Assuntos
Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Subfamília D de Receptores Semelhantes a Lectina de Células NK/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Vírus da Imunodeficiência Símia/imunologia , Animais , Biomarcadores , Linhagem Celular , Interações Hospedeiro-Patógeno/imunologia , Imunofenotipagem , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Macaca mulatta , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/virologia
11.
PLoS Pathog ; 14(5): e1007104, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29851983

RESUMO

Natural killer (NK) cells classically typify the nonspecific effector arm of the innate immune system, but have recently been shown to possess memory-like properties against multiple viral infections, most notably CMV. Expression of the activating receptor NKG2C is elevated on human NK cells in response to infection with CMV as well as HIV, and may delineate cells with memory and memory-like functions. A better understanding of how NKG2C+ NK cells specifically respond to these pathogens could be significantly advanced using nonhuman primate (NHP) models but, to date, it has not been possible to distinguish NKG2C from its inhibitory counterpart, NKG2A, in NHP because of unfaithful antibody cross-reactivity. Using novel RNA-based flow cytometry, we identify for the first time true memory NKG2C+ NK cells in NHP by gene expression (KLRC2), and show that these cells have elevated frequencies and diversify their functional repertoire specifically in response to rhCMV and SIV infections.


Assuntos
Infecções por Citomegalovirus/imunologia , Células Matadoras Naturais/imunologia , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Animais , Antígenos CD57/imunologia , Citomegalovirus/imunologia , Humanos , Macaca mulatta
12.
Int Immunol ; 31(3): 175-180, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30418531

RESUMO

Natural killer (NK) cells are primary immune effector cells with both innate and potentially adaptive functions against viral infections, but commonly become exhausted or dysfunctional during chronic diseases such as human immunodeficiency virus (HIV). Chimpanzees are the closest genetic relatives of humans and have been previously used in immunology, behavior and disease models. Due to their similarities to humans, a better understanding of chimpanzee immunology, particularly innate immune cells, can lend insight into the evolution of human immunology, as well as response to disease. However, the phenotype of NK cells has been poorly defined. In order to define NK cell phenotypes, we unbiasedly quantified NK cell markers among mononuclear cells in both naive and HIV-infected chimpanzees by flow cytometry. We identified NKG2D and NKp46 as the most dominant stable NK cells markers using multidimensional data reduction analyses. Other traditional NK cell markers such as CD8α, CD16 and perforin fluctuated during infection, while some such as CD56, NKG2A and NKp30 were generally unaltered by HIV infection, but did not delineate the full NK cell repertoire. Taken together, these data indicate that phenotypic dysregulation may not be pronounced during HIV infection of chimpanzees, but traditional NK cell phenotyping used for both humans and other non-human primate species may need to be revised to accurately identify chimpanzee NK cells.


Assuntos
Citometria de Fluxo , Infecções por HIV/imunologia , Infecções por HIV/patologia , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Pan troglodytes/imunologia , Pan troglodytes/virologia , Animais , Infecções por HIV/sangue , Humanos , Células Matadoras Naturais/patologia , Pan troglodytes/sangue , Fenótipo
13.
J Virol ; 92(11)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29514912

RESUMO

Natural killer (NK) cells respond rapidly as a first line of defense against infectious pathogens. In addition, NK cells may provide a "rheostat" function and have been shown to reduce the magnitude of antigen-specific T cell responses following infection to avoid immunopathology. However, it remains unknown whether NK cells similarly modulate vaccine-elicited T cell responses following virus challenge. We used the lymphocytic choriomeningitis virus (LCMV) clone 13 infection model to address whether NK cells regulate T cell responses in adenovirus vector-vaccinated mice following challenge. As expected, NK cell depletion in unvaccinated mice resulted in increased virus-specific CD4+ and CD8+ T cell responses and immunopathology following LCMV challenge. In contrast, NK cell depletion had minimal to no impact on antigen-specific T cell responses in mice that were vaccinated with an adenovirus serotype 5 (Ad5)-GP vector prior to LCMV challenge. Moreover, NK cell depletion in vaccinated mice prior to challenge did not result in immunopathology and did not compromise protective efficacy. These data suggest that adenovirus vaccine-elicited T cells may be less sensitive to NK cell rheostat regulation than T cells primed by LCMV infection.IMPORTANCE Recent data have shown that NK cell depletion leads to enhanced virus-elicited T cell responses that can result in severe immunopathology following LCMV infection in mice. In this study, we observed that NK cells exerted minimal to no impact on vaccine-elicited T cells following LCMV challenge, suggesting that adenovirus vaccine-elicited T cells may be less subject to NK cell regulation. These data contribute to our understanding of NK cell regulatory functions and T cell-based vaccines.


Assuntos
Adenovírus Humanos/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Matadoras Naturais/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Vacinas Virais/imunologia , Adenovírus Humanos/genética , Animais , Feminino , Depleção Linfocítica , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/genética , Camundongos , Camundongos Endogâmicos C57BL , Vacinação
14.
J Virol ; 91(20)2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28794018

RESUMO

Classically, natural killer (NK) cells have been defined by nonspecific innate killing of virus-infected and tumor cells. However, burgeoning evidence suggests that the functional repertoire of NK cells is far more diverse than has been previously appreciated, thus raising the possibility that there may be unexpected functional specialization and even adaptive capabilities among NK cell subpopulations. Some of the first evidence that NK cells respond in an antigen-specific fashion came from experiments revealing that subpopulations of murine NK cells were able to respond to a specific murine cytomegalovirus (MCMV) protein and that in the absence of T and B cells, murine NK cells also mediated adaptive immune responses to a secondary challenge with specific haptens. These data have been followed by demonstrations of NK cell memory of viruses and viral antigens in mice and primates. Herein, we discuss different forms of NK cell antigen specificity and how these responses may be tuned to specific viral pathogens, and we provide assessment of the current literature that may explain molecular mechanisms of the novel phenomenon of NK cell memory.


Assuntos
Imunidade Inata , Memória Imunológica , Células Matadoras Naturais/imunologia , Imunidade Adaptativa , Animais , Antígenos Virais/imunologia , Epitopos , Haptenos , Humanos , Camundongos , Muromegalovirus/química , Muromegalovirus/imunologia , Primatas
15.
PLoS Pathog ; 12(12): e1006104, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27959961

RESUMO

Defining the correlates of immune protection conferred by SIVΔnef, the most effective vaccine against SIV challenge, could enable the design of a protective vaccine against HIV infection. Here we provide a comprehensive assessment of immune responses that protect against SIV infection through detailed analyses of cellular and humoral immune responses in the blood and tissues of rhesus macaques vaccinated with SIVΔnef and then vaginally challenged with wild-type SIV. Despite the presence of robust cellular immune responses, animals at 5 weeks after vaccination displayed only transient viral suppression of challenge virus, whereas all macaques challenged at weeks 20 and 40 post-SIVΔnef vaccination were protected, as defined by either apparent sterile protection or significant suppression of viremia in infected animals. Multiple parameters of CD8 T cell function temporally correlated with maturation of protection, including polyfunctionality, phenotypic differentiation, and redistribution to gut and lymphoid tissues. Importantly, we also demonstrate the induction of a tissue-resident memory population of SIV-specific CD8 T cells in the vaginal mucosa, which was dependent on ongoing low-level antigenic stimulation. Moreover, we show that vaginal and serum antibody titers inversely correlated with post-challenge peak viral load, and we correlate the accumulation and affinity maturation of the antibody response to the duration of the vaccination period as well as to the SIVΔnef antigenic load. In conclusion, maturation of SIVΔnef-induced CD8 T cell and antibody responses, both propelled by viral persistence in the gut mucosa and secondary lymphoid tissues, results in protective immune responses that are able to interrupt viral transmission at mucosal portals of entry as well as potential sites of viral dissemination.


Assuntos
Anticorpos Antivirais/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Feminino , Citometria de Fluxo , Imunidade Celular/imunologia , Imunidade Humoral/imunologia , Macaca mulatta , Reação em Cadeia da Polimerase em Tempo Real , Vagina/imunologia , Vagina/virologia , Carga Viral
16.
J Med Primatol ; 47(5): 302-304, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30256418

RESUMO

The oral mucosae and draining lymph nodes are primary entry points for invading pathogens, particularly during immunosuppressive HIV/SIV infections. Innate immunity against oral stimuli, including natural killer (NK) cells, is understudied. Herein, we demonstrate functional NK cell responses to pathogen-associated molecular patterns (PAMPs) of potential oral pathogens in rhesus macaques.


Assuntos
Imunidade Inata , Células Matadoras Naturais/imunologia , Linfonodos/imunologia , Macaca mulatta , Moléculas com Motivos Associados a Patógenos/farmacologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Animais
17.
J Immunol ; 196(5): 2401-9, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26826246

RESUMO

Given the critical role of mucosal surfaces in susceptibility to infection, it is imperative that effective mucosal responses are induced when developing efficacious vaccines and prevention strategies for infection. Modulating the microbiota in the gastrointestinal (GI) tract through the use of probiotics (PBio) is a safe and well-tolerated approach to enhance mucosal and overall health. We assessed the longitudinal impact of daily treatment with the VSL#3 probiotic on cellular and humoral immunity and inflammation in healthy macaques. PBio therapy resulted in significantly increased frequencies of B cells expressing IgA in the colon and lymph node (LN), likely because of significantly increased LN T follicular helper cell frequencies and LN follicles. Increased frequencies of IL-23(+) APCs in the colon were found post-PBio treatment, which correlated with LN T follicular helper cells. Finally, VSL#3 significantly downmodulated the response of TLR2-, TLR3-, TLR4-, and TLR9-expressing HEK293 cells to stimulation with Pam3CSK4, polyinosinic-polycytidylic acid, LPS, and ODN2006, respectively. These data provide a mechanism for the beneficial impact of PBio on mucosal health and implicates the use of PBio therapy in the context of vaccination or preventative approaches to enhance protection from mucosal infection by improving immune defenses at the mucosal portal of entry.


Assuntos
Imunidade , Microbiota , Mucosa/imunologia , Mucosa/microbiologia , Animais , Células Apresentadoras de Antígenos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linhagem Celular , Colo/imunologia , Colo/microbiologia , Microbioma Gastrointestinal/imunologia , Humanos , Imunidade Inata , Imunidade nas Mucosas , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Interleucina-23/biossíntese , Linfonodos/imunologia , Linfonodos/metabolismo , Ativação Linfocitária/imunologia , Macaca , Probióticos/administração & dosagem , Transdução de Sinais , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Receptores Toll-Like/metabolismo
18.
J Virol ; 90(20): 9153-62, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27489267

RESUMO

UNLABELLED: Despite its importance in shaping adaptive immune responses, viral clearance, and immune-based inflammation, tissue-specific innate immunity remains poorly characterized for hepatitis C virus (HCV) infection due to the lack of access to acutely infected tissues. In this study, we evaluated the impact of natural killer (NK) cells and myeloid (mDCs) and plasmacytoid (pDCs) dendritic cells on control of virus replication and virus-induced pathology caused by another, more rapidly resolving hepacivirus, GB virus B (GBV-B), in infections of common marmosets. High plasma and liver viral loads and robust hepatitis characterized acute GBV-B infection, and while viremia was generally cleared by 2 to 3 months postinfection, hepatitis and liver fibrosis persisted after clearance. Coinciding with peak viral loads and liver pathology, the levels of NK cells, mDCs, and pDCs in the liver increased up to 3-fold. Although no obvious numerical changes in peripheral innate cells occurred, circulating NK cells exhibited increased perforin and Ki67 expression levels and increased surface expression of CXCR3. These data suggested that increased NK cell arming and proliferation as well as tissue trafficking may be associated with influx into the liver during acute infection. Indeed, NK cell frequencies in the liver positively correlated with plasma (R = 0.698; P = 0.015) and liver (R = 0.567; P = 0.057) viral loads. Finally, soluble factors associated with NK cells and DCs, including gamma interferon (IFN-γ) and RANTES, were increased in acute infection and also were associated with viral loads and hepatitis. Collectively, the findings showed that mobilization of local and circulating innate immune responses was linked to acute virus-induced hepatitis, and potentially to resolution of GBV-B infection, and our results may provide insight into similar mechanisms in HCV infection. IMPORTANCE: Hepatitis C virus (HCV) infection has created a global health crisis, and despite new effective antivirals, it is still a leading cause of liver disease and death worldwide. Recent evidence suggests that innate immunity may be a potential therapeutic target for HCV, but it may also be a correlate of increased disease. Due to a lack of access to human tissues with acute HCV infection, in this study we evaluated the role of innate immunity in resolving infection with a hepacivirus, GBV-B, in common marmosets. Collectively, our data suggest that NK cell and DC mobilization in acute hepacivirus infection can dampen virus replication but also regulate acute and chronic liver damage. How these two opposing effects on the host may be modulated in future therapeutic and vaccine approaches warrants further study.


Assuntos
Células Dendríticas/imunologia , Vírus GB B/imunologia , Hepatite Viral Animal/imunologia , Hepatite Viral Animal/patologia , Imunidade Inata , Células Matadoras Naturais/imunologia , Animais , Callithrix , Citocinas/metabolismo , Vírus GB B/patogenicidade , Fatores Imunológicos/metabolismo , Fígado/patologia , Fígado/virologia , Carga Viral
19.
J Virol ; 90(10): 4981-4989, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26937040

RESUMO

UNLABELLED: An altered intestinal microbiome during chronic human immunodeficiency virus (HIV) infection is associated with mucosal dysfunction, inflammation, and disease progression. We performed a preclinical evaluation of the safety and efficacy of fecal microbiota transplantation (FMT) as a potential therapeutic in HIV-infected individuals. Antiretroviral-treated, chronically simian immunodeficiency virus (SIV)-infected rhesus macaques received antibiotics followed by FMT. The greatest microbiota shift was observed after antibiotic treatment. The bacterial community composition at 2 weeks post-FMT resembled the pre-FMT community structure, although differences in the abundances of minor bacterial populations remained. Immunologically, we observed significant increases in the number of peripheral Th17 and Th22 cells and reduced CD4(+) T cell activation in gastrointestinal tissues post-FMT. Importantly, the transplant was well tolerated with no negative clinical side effects. Although this pilot study did not control for the differential contributions of antibiotic treatment and FMT to the observed results, the data suggest that FMT may have beneficial effects that should be further evaluated in larger studies. IMPORTANCE: Due to the immunodeficiency and chronic inflammation that occurs during HIV infection, determination of the safety of FMT is crucial to prevent deleterious consequences if it is to be used as a treatment in the future. Here we used the macaque model of HIV infection and performed FMT on six chronically SIV-infected rhesus macaques on antiretroviral treatment. In addition to providing a preclinical demonstration of the safety of FMT in primates infected with a lentivirus, this study provided a unique opportunity to examine the relationships between alterations to the microbiome and immunological parameters. In this study, we found increased numbers of Th17 and Th22 cells as well as decreased activation of CD4(+) T cells post-FMT, and these changes correlated most strongly across all sampling time points with lower-abundance taxonomic groups and other taxonomic groups in the colon. Overall, these data provide evidence that changes in the microbiome, particularly in terms of diversity and changes in minor populations, can enhance immunity and do not have adverse consequences.


Assuntos
Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/terapia , Vírus da Imunodeficiência Símia/imunologia , Animais , Antibacterianos/uso terapêutico , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Colo/microbiologia , Colo/patologia , Modelos Animais de Doenças , Transplante de Microbiota Fecal/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/imunologia , Genes de RNAr , Infecções por HIV/imunologia , Infecções por HIV/microbiologia , Infecções por HIV/terapia , Infecções por HIV/virologia , Humanos , Intestinos/citologia , Intestinos/imunologia , Intestinos/microbiologia , Ativação Linfocitária/efeitos dos fármacos , Macaca mulatta , Projetos Piloto , RNA Ribossômico 16S/genética , Síndrome de Imunodeficiência Adquirida dos Símios/microbiologia , Vírus da Imunodeficiência Símia/genética , Células Th17/imunologia , Carga Viral/efeitos dos fármacos
20.
PLoS Pathog ; 11(3): e1004740, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25768938

RESUMO

The onset of protective immunity against pathogenic SIV challenge in SIVΔnef-vaccinated macaques is delayed for 15-20 weeks, a process that is related to qualitative changes in CD8+ T cell responses induced by SIVΔnef. As a novel approach to characterize cell differentiation following vaccination, we used multi-target qPCR to measure transcription factor expression in naïve and memory subsets of CD8++ T cells, and in SIV-specific CD8+ T cells obtained from SIVΔnef-vaccinated or wild type SIVmac239-infected macaques. Unsupervised clustering of expression profiles organized naïve and memory CD8+ T cells into groups concordant with cell surface phenotype. Transcription factor expression patterns in SIV-specific CD8+ T cells in SIVΔnef-vaccinated animals were distinct from those observed in purified CD8+ T cell subsets obtained from naïve animals, and were intermediate to expression profiles of purified central memory and effector memory T cells. Expression of transcription factors elicited by SIVΔnef vaccination also varied over time: cells obtained at later time points, temporally associated with greater protection, appeared more central-memory like than cells obtained at earlier time points, which appeared more effector memory-like. Expression of transcription factors associated with effector differentiation, such as ID2 and RUNX3, were decreased over time, while expression of transcription factors associated with quiescence or memory differentiation, such as TCF7, BCOR and EOMES, increased. CD8+ T cells specific for a more conserved epitope expressed higher levels of TBX21 and BATF, and appeared more effector-like than cells specific for an escaped epitope, consistent with continued activation by replicating vaccine virus. These data suggest transcription factor expression profiling is a novel method that can provide additional data complementary to the analysis of memory cell differentiation based on classical phenotypic markers. Additionally, these data support the hypothesis that ongoing stimulation by SIVΔnef promotes a distinct protective balance of CD8+ T cell differentiation and activation states.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica , Vacinas contra a SAIDS/imunologia , Vírus da Imunodeficiência Símia/imunologia , Fatores de Transcrição/imunologia , Proteínas Virais Reguladoras e Acessórias , Animais , Linfócitos T CD8-Positivos/patologia , Diferenciação Celular/imunologia , Feminino , Perfilação da Expressão Gênica , Macaca mulatta , Vacinas contra a SAIDS/genética , Vírus da Imunodeficiência Símia/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa