Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Physiol Genomics ; 56(3): 265-275, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38145289

RESUMO

Agouti-related peptide (AgRP/Agrp) within the hypothalamic arcuate nucleus (ARC) contributes to the control of energy balance, and dysregulated Agrp may contribute to metabolic adaptation during prolonged obesity. In mice, three isoforms of Agrp are encoded via distinct first exons. Agrp-A (ENSMUST00000005849.11) contributed 95% of total Agrp in mouse ARC, whereas Agrp-B (ENSMUST00000194654.2) dominated in placenta (73%). Conditional deletion of Klf4 from Agrp-expressing cells (Klf4Agrp-KO mice) reduced Agrp mRNA and increased energy expenditure but had no effects on food intake or the relative abundance of Agrp isoforms in the ARC. Chronic high-fat diet feeding masked these effects of Klf4 deletion, highlighting the context-dependent contribution of KLF4 to Agrp control. In the GT1-7 mouse hypothalamic cell culture model, which expresses all three isoforms of Agrp (including Agrp-C, ENSMUST00000194091.6), inhibition of extracellular signal-regulated kinase (ERK) simultaneously increased KLF4 binding to the Agrp promoter and stimulated Agrp expression. In addition, siRNA-mediated knockdown of Klf4 reduced expression of Agrp. We conclude that the expression of individual isoforms of Agrp in the mouse is dependent upon cell type and that KLF4 directly promotes the transcription of Agrp via a mechanism that is superseded during obesity.NEW & NOTEWORTHY In mice, three distinct isoforms of Agouti-related peptide are encoded via distinct first exons. In the arcuate nucleus of the hypothalamus, Krüppel-like factor 4 stimulates transcription of the dominant isoform in lean mice, but this mechanism is altered during diet-induced obesity.


Assuntos
Proteína Relacionada com Agouti , Fator 4 Semelhante a Kruppel , Neurônios , Animais , Camundongos , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Obesidade/genética , Obesidade/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
2.
Am J Physiol Regul Integr Comp Physiol ; 326(3): R242-R253, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38284128

RESUMO

The estrous cycle is known to modify food, fluid, and electrolyte intake behaviors and energy homeostasis in various species, in part through fluctuations in estrogen levels. Simultaneously, commonly commercially available rodent dietary formulations greatly vary in soy protein content, and thereby the delivery of biologically active phytoestrogens. To explore the interactions among the estrous cycle, sodium, fluid, and caloric seeking behaviors, and energy homeostasis, young adult C57BL/6J female mice were maintained on a soy protein-free 2920x diet and provided water, or a choice between water and 0.15 mol/L NaCl drink solution. Comprehensive metabolic phenotyping was performed using a multiplexed Promethion (Sable Systems International) system, and estrous stages were determined via daily vaginal cytology. When provided food and water, estrous cycling had no major modulatory effects on intake behaviors or energy balance. When provided a saline solution drink choice, significant modulatory effects of the transition from diestrus to proestrus were observed upon fluid intake patterning, locomotion, and total energy expenditure. Access to saline increased total daily sodium consumption and aspects of energy expenditure, but these effects were not modified by the estrous stage. Collectively, these results indicate that when supplied a phytoestrogen-free diet, the estrous cycle has minor modulatory effects on ingestive behaviors and energy balance in C57BL/6J mice that are sensitive to sodium supply.NEW & NOTEWORTHY When provided a phytoestrogen-free diet, the estrous cycle had very little effect on food and water intake, physical activity, or energy expenditure in C57BL/6J mice. In contrast, when provided an NaCl drink in addition to food and water, the estrous cycle was associated with changes in intake behaviors and energy expenditure. These findings highlight the complex interactions among estrous cycling, dietary formulation, and nutrient presentation upon ingestive behaviors and energy homeostasis in mice.


Assuntos
Fitoestrógenos , Cloreto de Sódio , Camundongos , Feminino , Animais , Fitoestrógenos/farmacologia , Camundongos Endogâmicos C57BL , Ciclo Estral , Dieta , Metabolismo Energético , Sódio , Água
3.
Am J Physiol Regul Integr Comp Physiol ; 325(5): R576-R592, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37720996

RESUMO

Postnatal growth failure remains a significant problem for infants born prematurely, despite aggressive efforts to improve perinatal nutrition. Though often dysregulated in early life when children are born preterm, sodium (Na) homeostasis is vital to achieve optimal growth. We hypothesize that insufficient Na supply in this critical period contributes to growth restriction and programmed risks for cardiometabolic disease in later adulthood. Thus, we sought to ascertain the effects of prolonged versus early-life Na depletion on weight gain, body composition, food and water intake behaviors, and energy expenditure in C57BL/6J mice. In one study, mice were provided a low (0.04%)- or normal/high (0.30%)-Na diet between 3 and 18 wk of age. Na-restricted mice demonstrated delayed growth and elevated basal metabolic rate. In a second study, mice were provided 0.04% or 0.30% Na diet between 3 and 6 wk of age and then returned to standard (0.15%)-Na diet through the end of the study. Na-restricted mice exhibited growth delays that quickly caught up on return to standard diet. Between 6 and 18 wk of age, previously restricted mice exhibited sustained, programmed changes in feeding behaviors, reductions in total food intake, and increases in water intake and aerobic energy expenditure while maintaining normal body composition. Although having no effect in control mice, administration of the ganglionic blocker hexamethonium abolished the programmed increase in basal metabolic rate in previously restricted mice. Together these data indicate that early-life Na restriction can cause programmed changes in ingestive behaviors, autonomic function, and energy expenditure that persist well into adulthood.


Assuntos
Comportamento Alimentar , Sódio , Humanos , Gravidez , Feminino , Lactente , Criança , Camundongos , Animais , Camundongos Endogâmicos C57BL , Metabolismo Energético , Aumento de Peso , Peso Corporal
4.
Physiol Genomics ; 54(6): 196-205, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35476598

RESUMO

The brain renin-angiotensin system (RAS) is implicated in control of blood pressure (BP), fluid intake, and energy expenditure (EE). Angiotensin II (ANG II) within the arcuate nucleus of the hypothalamus contributes to control of resting metabolic rate (RMR) and thereby EE through its actions on Agouti-related peptide (AgRP) neurons, which also contribute to EE control by leptin. First, we determined that although leptin stimulates EE in control littermates, mice with transgenic activation of the brain RAS (sRA) exhibit increased EE and leptin has no additive effect to exaggerate EE in these mice. These findings led us to hypothesize that leptin and ANG II in the brain stimulate EE through a shared mechanism. Because AgRP signaling to the melanocortin MC4R receptor contributes to the metabolic effects of leptin, we performed a series of studies examining RMR, fluid intake, and BP responses to ANG II in mice rendered deficient for expression of MC4R via a transcriptional block (Mc4r-TB). These mice were resistant to stimulation of RMR in response to activation of the endogenous brain RAS via chronic deoxycorticosterone acetate (DOCA)-salt treatment, whereas fluid and electrolyte effects remained intact. These mice were also resistant to stimulation of RMR via acute intracerebroventricular (ICV) injection of ANG II, whereas BP responses to ICV ANG II remained intact. Collectively, these data demonstrate that the effects of ANG II within the brain to control RMR and EE are dependent on MC4R signaling, whereas fluid homeostasis and BP responses are independent of MC4R signaling.


Assuntos
Angiotensina II , Metabolismo Energético , Leptina , Receptor Tipo 4 de Melanocortina , Proteína Relacionada com Agouti/metabolismo , Angiotensina II/farmacologia , Animais , Pressão Sanguínea/fisiologia , Encéfalo/metabolismo , Metabolismo Energético/fisiologia , Leptina/metabolismo , Leptina/farmacologia , Melanocortinas/metabolismo , Melanocortinas/farmacologia , Camundongos , Receptor Tipo 4 de Melanocortina/metabolismo
5.
Am J Physiol Regul Integr Comp Physiol ; 322(4): R281-R291, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35107022

RESUMO

Alternative splicing of exon24 (E24) of myosin phosphatase targeting subunit 1 (Mypt1) by setting sensitivity to nitric oxide (NO)/cGMP-mediated relaxation is a key determinant of smooth muscle function. Here we defined expression of myosin phosphatase (MP) subunits and isoforms by creation of new genetic mouse models, assay of human and mouse tissues, and query of public databases. A Mypt1-LacZ reporter mouse revealed that Mypt1 transcription is turned on early in development during smooth muscle differentiation. Mypt1 is not as tightly restricted in its expression as smooth muscle myosin heavy chain (Myh11) and its E6 splice variant. Mypt1 is enriched in mature smooth versus nonmuscle cells. The E24 splice variant and leucine zipper minus protein isoform that it encodes is enriched in phasic versus tonic smooth muscle. In the vascular system, E24 splicing increases as vessel size decreases. In the gastrointestinal system, E24 splicing is most predominant in smooth muscle of the small intestine. Tissue-specific expression of MP subunits and Mypt1 E24 splicing is conserved in humans, whereas a splice variant of the inhibitory subunit (CPI-17) is unique to humans. A Mypt1 E24 mini-gene splicing reporter mouse generated to define patterns of E24 splicing in smooth muscle cells (SMCs) dispersed throughout the organ systems was unsuccessful. In summary, expression of Mypt1 and splicing of E24 is part of the program of smooth muscle differentiation, is further enhanced in phasic smooth muscle, and is conserved in humans. Its low-level expression in nonmuscle cells may confound its measurement in tissue samples.


Assuntos
Músculo Liso Vascular , Miócitos de Músculo Liso , Fosfatase de Miosina-de-Cadeia-Leve , Animais , GMP Cíclico/metabolismo , Humanos , Camundongos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/genética , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Fosforilação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
6.
Am J Physiol Regul Integr Comp Physiol ; 322(6): R467-R485, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35348007

RESUMO

Hypertension characterized by low circulating renin activity accounts for roughly 25%-30% of primary hypertension in humans and can be modeled experimentally via deoxycorticosterone acetate (DOCA)-salt treatment. In this model, phenotypes develop in progressive phases, although the timelines and relative contributions of various mechanisms to phenotype development can be distinct between laboratories. To explore interactions among environmental influences such as diet formulation and dietary sodium (Na) content on phenotype development in the DOCA-salt paradigm, we examined an array of cardiometabolic endpoints in young adult male C57BL/6J mice during sham or DOCA-salt treatments when mice were maintained on several common, commercially available laboratory rodent "chow" diets including PicoLab 5L0D (0.39% Na), Envigo 7913 (0.31% Na), Envigo 2920x (0.15% Na), or a customized version of Envigo 2920x (0.4% Na). Energy balance (weight gain, food intake, digestive efficiency, and energy efficiency), fluid and electrolyte homeostasis (fluid intake, Na intake, fecal Na content, hydration, and fluid compartmentalization), renal functions (urine production rate, glomerular filtration rate, urine Na excretion, renal expression of renin, vasopressin receptors, aquaporin-2 and relationships among markers of vasopressin release, aquaporin-2 shedding, and urine osmolality), and blood pressure, all exhibited changes that were subject to interactions between diet and DOCA-salt. Interestingly, some of these phenotypes, including blood pressure and hydration, were dependent on nonsodium dietary components, as Na-matched diets resulted in distinct phenotype development. These findings provide a broad and robust illustration of an environment × treatment interaction that impacts the use and interpretation of a common rodent model of low-renin hypertension.


Assuntos
Acetato de Desoxicorticosterona , Hipertensão , Animais , Aquaporina 2 , Pressão Sanguínea/fisiologia , Desoxicorticosterona/farmacologia , Acetato de Desoxicorticosterona/farmacologia , Dieta , Hipertensão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Renina/metabolismo , Sódio/metabolismo
7.
Am J Physiol Regul Integr Comp Physiol ; 323(4): R410-R421, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35816717

RESUMO

The renin-angiotensin system (RAS) within the brain is implicated in the control of fluid and electrolyte balance, autonomic functions, blood pressure, and energy expenditure. Mouse models are increasingly used to explore these mechanisms; however, sex and dose dependencies of effects elicited by chronic intracerebroventricular (ICV) angiotensin II (ANG II) infusion have not been carefully established in this species. To examine the interactions among sex, body mass, and ICV ANG II on ingestive behaviors and energy balance, young adult C57BL/6J mice of both sexes were studied in a multiplexed metabolic phenotyping system (Promethion) during chronic infusion of ANG II (0, 5, 20, or 50 ng/h). At these infusion rates, ANG II caused accelerating dose-dependent increases in drinking and total energy expenditure in male mice, but female mice exhibited a complex biphasic response with maximum responses at 5 ng/h. Body mass differences did not account for sex-dependent differences in drinking behavior or total energy expenditure. In contrast, resting metabolic rate was similarly increased by ICV ANG II in a dose-dependent manner in both sexes after correction for body mass. We conclude that chronic ICV ANG II stimulates water intake, resting, and total energy expenditure in male C57BL/6J mice following straightforward accelerating dose-dependent kinetics, but female C57BL/6J mice exhibit complex biphasic responses to ICV ANG II. Furthermore, control of resting metabolic rate by ANG II is dissociable from mechanisms controlling fluid intake and total energy expenditure. Future studies of the sex dependency of ANG II within the brain of mice must be designed to carefully consider the biphasic responses that occur in females.


Assuntos
Angiotensina II , Angiotensina II/farmacologia , Animais , Pressão Sanguínea/fisiologia , Feminino , Homeostase , Infusões Intraventriculares , Injeções Intraventriculares , Masculino , Camundongos , Camundongos Endogâmicos C57BL
8.
Arterioscler Thromb Vasc Biol ; 41(11): 2708-2725, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34551590

RESUMO

Objective: To investigate the role of adipocyte Pcpe2 (procollagen C-endopeptidase enhancer 2) in SR-BI (scavenger receptor class BI)-mediated HDL-C (high-density lipoprotein cholesterol) uptake and contributions to adipose lipid storage. Approach and Results: Pcpe2, a glycoprotein devoid of intrinsic proteolytic activity, is believed to participate in extracellular protein-protein interactions, supporting SR-BI- mediated HDL-C uptake. In published studies, Pcpe2 deficiency increased the development of atherosclerosis by reducing SR-BI-mediated HDL-C catabolism, but the biological impact of this deficiency on adipocyte SR-BI-mediated HDL-C uptake is unknown. Differentiated cells from Ldlr-/-/Pcpe2-/- (Pcpe2-/-) mouse adipose tissue showed elevated SR-BI protein levels, but significantly reduced HDL-C uptake compared to Ldlr-/- (control) adipose tissue. SR-BI-mediated HDL-C uptake was restored by preincubation of cells with exogenous Pcpe2. In diet-fed mice lacking Pcpe2, significant reductions in visceral, subcutaneous, and brown adipose tissue mass were observed, despite elevations in plasma triglyceride and cholesterol concentrations. Significant positive correlations exist between adipose mass and Pcpe2 expression in both mice and humans. Conclusions: Overall, these findings reveal a novel and unexpected function for Pcpe2 in modulating SR-BI expression and function as it relates to adipose tissue expansion and cholesterol balance in both mice and humans.


Assuntos
Adipócitos/metabolismo , Aterosclerose/metabolismo , HDL-Colesterol/metabolismo , Glicoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Microdomínios da Membrana/metabolismo , Obesidade/metabolismo , Receptores Depuradores Classe B/metabolismo , Gordura Subcutânea/metabolismo , Adipócitos/patologia , Adipogenia , Adiposidade , Adulto , Animais , Aterosclerose/genética , Aterosclerose/patologia , Células CHO , Caveolina 1/metabolismo , Cricetulus , Dieta Hiperlipídica , Modelos Animais de Doenças , Metabolismo Energético , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Feminino , Glicoproteínas/genética , Humanos , Mediadores da Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Microdomínios da Membrana/genética , Microdomínios da Membrana/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Obesidade/genética , Obesidade/patologia , Receptores de LDL/genética , Receptores de LDL/metabolismo , Receptores Depuradores Classe B/genética , Gordura Subcutânea/patologia
9.
Am J Physiol Regul Integr Comp Physiol ; 320(4): R438-R451, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33439766

RESUMO

Postnatal growth failure is a common morbidity for preterm infants and is associated with adverse neurodevelopmental outcomes. Although sodium (Na) deficiency early in life impairs somatic growth, its impact on neurocognitive functions has not been extensively studied. We hypothesized that Na deficiency during early life is sufficient to cause growth failure and program neurobehavioral impairments in later life. C57BL/6J mice were placed on low- (0.4), normal- (1.5), or high- (3 g/kg) Na chow at weaning (PD22) and continued on the diet for 3 wk (to PD40). Body composition and fluid distribution were determined serially by time-domain NMR and bioimpedance spectroscopy, and anxiety, learning, and memory were assessed using the elevated plus maze and Morris water maze paradigms in later adulthood (PD63-PD69). During the diet intervention, body mass gains were suppressed in the low- compared with normal- and high-Na groups despite similar caloric uptake rates across groups. Fat mass was reduced in males but not in females fed low-Na diet. Fat-free mass and hydration were significantly reduced in both males and females fed the low-Na diet, although rapidly corrected after return to normal diet. Measures of anxiety-like behavior and learning in adulthood were not affected by diet in either sex, yet memory performance was modified by a complex interaction between sex and early life Na intake. These data support the concepts that Na deficiency impairs growth and that the amount of Na intake which supports optimal somatic growth during early life may be insufficient to fully support neurocognitive development.


Assuntos
Comportamento Animal , Dieta Hipossódica/efeitos adversos , Sistema Nervoso/crescimento & desenvolvimento , Estado Nutricional , Sódio na Dieta/administração & dosagem , Memória Espacial , Equilíbrio Hidroeletrolítico , Fatores Etários , Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Animais , Composição Corporal , Teste de Labirinto em Cruz Elevado , Feminino , Masculino , Camundongos Endogâmicos C57BL , Teste do Labirinto Aquático de Morris , Aumento de Peso
10.
Am J Physiol Regul Integr Comp Physiol ; 321(2): R228-R237, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34189960

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) signaling complex is emerging as a critical regulator of cardiovascular function with alterations in this pathway implicated in cardiovascular diseases. In this study, we used animal models and human tissues to examine the role of vascular mTORC1 signaling in the endothelial dysfunction associated with obesity. In mice, obesity induced by high-fat/high-sucrose diet feeding for ∼2 mo resulted in aortic endothelial dysfunction without appreciable changes in vascular mTORC1 signaling. On the other hand, chronic high-fat diet feeding (45% or 60% kcal: ∼9 mo) in mice resulted in endothelial dysfunction associated with elevated vascular mTORC1 signaling. Endothelial cells and visceral adipose vessels isolated from obese humans display a trend toward elevated mTORC1 signaling. Surprisingly, genetic disruption of endothelial mTORC1 signaling through constitutive or tamoxifen inducible deletion of endothelial Raptor (critical subunit of mTORC1) did not prevent or rescue the endothelial dysfunction associated with high-fat diet feeding in mice. Endothelial mTORC1 deficiency also failed to reverse the endothelial dysfunction evoked by a high-fat/high-sucrose diet in mice. Taken together, these data show increased vascular mTORC1 signaling in obesity, but this vascular mTORC1 activation appears not to be required for the development of endothelial impairment in obesity.


Assuntos
Endotélio Vascular/enzimologia , Alvo Mecanístico do Complexo 1 de Rapamicina/deficiência , Obesidade/prevenção & controle , Gordura Subcutânea/irrigação sanguínea , Vasodilatação , Animais , Aorta Torácica/enzimologia , Aorta Torácica/fisiopatologia , Estudos de Casos e Controles , Dieta Hiperlipídica , Sacarose Alimentar , Modelos Animais de Doenças , Endotélio Vascular/fisiopatologia , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Artérias Mesentéricas/enzimologia , Artérias Mesentéricas/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/enzimologia , Obesidade/genética , Obesidade/fisiopatologia , Proteína Regulatória Associada a mTOR/deficiência , Proteína Regulatória Associada a mTOR/genética , Transdução de Sinais
11.
Am J Physiol Regul Integr Comp Physiol ; 320(1): R44-R54, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33085913

RESUMO

The measurement of fluid compartmentalization, or the distribution of fluid volume between extracellular (ECF) and intracellular (ICF) spaces, historically requires complicated, burdensome, and often terminal methodologies that do not permit repeated or longitudinal experiments. New technologies including time-domain nuclear magnetic resonance (TD-NMR)-based methods allow for highly accurate measurements of total body water (TBW) within minutes in a noninvasive manner, but do not permit dissection of ECF versus ICF reservoirs. In contrast, methods such as bioimpedance spectroscopy (BIS) allow dissection of ECF versus ICF reservoirs but are hampered by dependence on many nuanced details in data collection that undermine confidence in experimental results. Here, we present a novel combinatorial use of these two technologies (NMR/BIS) to improve the accuracy of BIS-based assessments of ECF and ICF, while maintaining the advantages of these minimally invasive methods. Briefly, mice undergo TD-NMR and BIS-based measures, and then fat masses as derived by TD-NMR are used to correct BIS outputs. Mice of the C57BL/6J background were studied using NMR/BIS methods to assess the effects of acute furosemide injection and diet-induced obesity on fluid compartmentalization, and to examine the influence of sex, body mass and composition, and diet on TBW, ECF, and ICF. We discovered that in mice, sex and body size/composition have substantial and interactive effects on fluid compartmentalization. We propose that the combinatorial use of NMR/BIS methods will enable a revisioning of the types of longitudinal, kinetic studies that can be performed to understand the impact of various interventions on body fluid homeostasis.


Assuntos
Composição Corporal , Compartimentos de Líquidos Corporais/metabolismo , Deslocamentos de Líquidos Corporais , Espectroscopia de Ressonância Magnética , Adiposidade , Animais , Tamanho Corporal , Impedância Elétrica , Feminino , Masculino , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes , Fatores Sexuais
12.
Clin Sci (Lond) ; 131(14): 1689-1700, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28667067

RESUMO

Obesity is associated with increased cardiovascular morbidity and mortality in part due to vascular abnormalities such as endothelial dysfunction and arterial stiffening. The hypertension and other health complications that arise from these vascular defects increase the risk of heart diseases and stroke. Prooxidant and proinflammatory signaling pathways as well as adipocyte-derived factors have emerged as critical mediators of obesity-associated vascular abnormalities. Designing treatments aimed specifically at improving the vascular dysfunction caused by obesity may provide an effective therapeutic approach to prevent the cardiovascular sequelae associated with excessive adiposity. In this review, we discuss the recent evidence supporting the role of oxidative stress and cytokines and inflammatory signals within the vasculature as well as the impact of the surrounding perivascular adipose tissue (PVAT) on the regulation of vascular function and arterial stiffening in obesity. In particular, we focus on the highly plastic nature of the vasculature in response to altered oxidant and inflammatory signaling and highlight how weight management can be an effective therapeutic approach to reduce the oxidative stress and inflammatory signaling and improve vascular function.


Assuntos
Doenças Cardiovasculares/etiologia , Mediadores da Inflamação/metabolismo , Obesidade/complicações , Estresse Oxidativo/fisiologia , Animais , Doenças Cardiovasculares/fisiopatologia , Citocinas/metabolismo , Endotélio Vascular/fisiopatologia , Humanos , Inflamação/etiologia , Resistência à Insulina/fisiologia , Obesidade/dietoterapia , Obesidade/fisiopatologia , Transdução de Sinais/fisiologia , Redução de Peso/fisiologia
13.
Am J Physiol Heart Circ Physiol ; 311(1): H276-85, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27208157

RESUMO

Parasympathetic activity is often reduced in hypertension and can elicit anti-inflammatory mechanisms. Thus we hypothesized that chronic vagal nerve stimulation (VNS) may alleviate cardiovascular end-organ damage in stroke-prone spontaneously hypertensive rats. Vagal nerve stimulators were implanted, a high-salt diet initiated, and the stimulators turned on (VNS, n = 10) or left off (sham, n = 14) for 4 wk. Arterial pressure increased equally in both groups. After 4 wk, endothelial function, assessed by in vivo imaging of the long posterior ciliary artery (LPCA) after stimulation (pilocarpine) and inhibition (N(ω)-nitro-l-arginine methyl ester) of endothelial nitric oxide synthase (eNOS), had significantly declined (-2.3 ± 1.2 µm, P < 0.05) in sham, but was maintained (-0.7 ± 0.8 µm, nonsignificant) in VNS. Furthermore, aortic eNOS activation (phosphorylated to total eNOS protein content ratio) was greater in VNS (0.83 ± 0.07) than in sham (0.47 ± 0.08, P < 0.05). After only 3 wk, ultrasound imaging of the aorta demonstrated decreased aortic strain (-9.7 ± 2.2%, P < 0.05) and distensibility (-2.39 ± 0.49 1,000/mmHg, P < 0.05) and increased pulse-wave velocity (+2.4 ± 0.7 m/s, P < 0.05) in sham but not in VNS (-3.8 ± 3.8%, -0.70 ± 1.4 1,000/mmHg, and +0.1 ± 0.7 m/s, all nonsignificant). Interleukin (IL)-6 serum concentrations tended to be higher in VNS than in sham (34.3 ± 8.3 vs. 16.1 ± 4.6 pg/ml, P = 0.06), and positive correlations were found between NO-dependent relaxation of the LPCA and serum levels of IL-6 (r = +0.70, P < 0.05) and IL-10 (r = +0.56, P < 0.05) and between aortic eNOS activation and IL-10 (r = +0.48, P < 0.05). In conclusion, chronic VNS prevents hypertension-induced endothelial dysfunction and aortic stiffening in an animal model of severe hypertension. We speculate that anti-inflammatory mechanisms may contribute to these effects.


Assuntos
Aorta Torácica/fisiopatologia , Artérias Ciliares/fisiopatologia , Endotélio Vascular/fisiopatologia , Hipertensão/terapia , Cloreto de Sódio na Dieta , Acidente Vascular Cerebral/prevenção & controle , Estimulação do Nervo Vago/métodos , Rigidez Vascular , Vasodilatação , Animais , Aorta Torácica/metabolismo , Pressão Arterial , Artérias Ciliares/metabolismo , Modelos Animais de Doenças , Endotélio Vascular/metabolismo , Ativação Enzimática , Frequência Cardíaca , Hipertensão/sangue , Hipertensão/complicações , Hipertensão/fisiopatologia , Neuroestimuladores Implantáveis , Interleucina-6/sangue , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação , Ratos Endogâmicos SHR , Índice de Gravidade de Doença , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/fisiopatologia , Fatores de Tempo , Estimulação do Nervo Vago/instrumentação
14.
Am J Physiol Heart Circ Physiol ; 310(11): H1715-24, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27084390

RESUMO

The cGMP activated kinase cGK1α is targeted to its substrates via leucine zipper (LZ)-mediated heterodimerization and thereby mediates vascular smooth muscle (VSM) relaxation. One target is myosin phosphatase (MP), which when activated by cGK1α results in VSM relaxation even in the presence of activating calcium. Variants of MP regulatory subunit Mypt1 are generated by alternative splicing of the 31 nt exon 24 (E24), which, by changing the reading frame, codes for isoforms that contain or lack the COOH-terminal LZ motif (E24+/LZ-; E24-/LZ+). Expression of these isoforms is vessel specific and developmentally regulated, modulates in disease, and is proposed to confer sensitivity to nitric oxide (NO)/cGMP-mediated vasorelaxation. To test this, mice underwent Tamoxifen-inducible and smooth muscle-specific knockout of E24 (E24 cKO) after weaning. Deletion of a single allele of E24 (shift to Mypt1 LZ+) enhanced vasorelaxation of first-order mesenteric arteries (MA1) to diethylamine-NONOate (DEA/NO) and to cGMP in permeabilized and calcium-clamped arteries and lowered blood pressure. There was no further effect of deletion of both E24 alleles, indicating high sensitivity to shift of Mypt1 isoforms. However, a unique property of MA1s from homozygous E24 cKOs was significantly reduced force generation to α-adrenergic activation. Furthermore 2 wk of high-salt (4% NaCl) diet increased MA1 force generation to phenylephrine in control mice, a response that was markedly suppressed in the E24 cKO homozygotes. Thus Mypt1 E24 splice variants tune arterial reactivity and could be worthy targets for lowering vascular resistance in disease states.


Assuntos
Artérias Mesentéricas/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Vasodilatação/efeitos dos fármacos , Alelos , Processamento Alternativo , Animais , Artérias Mesentéricas/efeitos dos fármacos , Camundongos , Camundongos Knockout , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/genética , Isoformas de Proteínas/metabolismo , Cloreto de Sódio/farmacologia
15.
Am J Physiol Cell Physiol ; 308(4): C289-96, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25428883

RESUMO

Diversity of smooth muscle within the vascular system is generated by alternative splicing of exons, yet there is limited understanding of its timing or control mechanisms. We examined splicing of myosin phosphatase regulatory subunit (Mypt1) exon 24 (E24) in relation to smooth muscle myosin heavy chain (Smmhc) and smoothelin (Smtn) alternative exons (Smmhc E6 and Smtn E20) during maturation of mouse mesenteric artery (MA) smooth muscle. The role of transformer 2ß (Tra2ß), a master regulator of splicing in flies, in maturation of arterial smooth muscle was tested through gene inactivation. Splicing of alternative exons in bladder smooth muscle was examined for comparative purposes. MA smooth muscle maturation began after postnatal week 2 and was complete at maturity, as indicated by switching to Mypt1 E24+ and Smtn E20- splice variants and 11-fold induction of Smmhc. Similar changes in bladder were complete by postnatal day 3. Splicing of Smmhc E6 was temporally dissociated from Mypt1 E24 and Smtn E20 and discordant between arteries and bladder. Tamoxifen-induced smooth muscle-specific inactivation of Tra2ß within the first week of life but not in maturity reduced splicing of Mypt1 E24 in MAs. Inactivation of Tra2ß causing a switch to the isoform of MYPT1 containing the COOH-terminal leucine zipper motif (E24-) increased arterial sensitivity to cGMP-mediated relaxation. In conclusion, maturation of mouse MA smooth muscle begins postnatally and continues until sexual maturity. TRA2ß is required for specification during this period of maturation, and its inactivation alters the contractile properties of mature arterial smooth muscle.


Assuntos
Processamento Alternativo , Diferenciação Celular , Éxons , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Quinase de Cadeia Leve de Miosina/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores Etários , Animais , GMP Cíclico/análogos & derivados , GMP Cíclico/farmacologia , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Relação Dose-Resposta a Droga , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Técnicas In Vitro , Masculino , Artérias Mesentéricas/enzimologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Quinase de Cadeia Leve de Miosina/genética , Fosfatase de Miosina-de-Cadeia-Leve , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Fenótipo , Proteínas de Ligação a RNA/genética , Fatores de Processamento de Serina-Arginina , Miosinas de Músculo Liso/genética , Miosinas de Músculo Liso/metabolismo , Vasodilatação , Vasodilatadores/farmacologia
16.
Am J Physiol Heart Circ Physiol ; 309(9): H1468-78, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26371173

RESUMO

We examined the effect of stress in the first 2 wk of life induced by brief periods of daily maternal separation on developmental programming of rat small resistance mesenteric arteries (MAs). In MAs of littermate controls, mRNAs encoding mediators of vasoconstriction, including the α1a-adrenergic receptor, smooth muscle myosin heavy chain, and CPI-17, the inhibitory subunit of myosin phosphatase, increased from after birth through sexual [postnatal day (PND) 35] and full maturity, up to ∼80-fold, as measured by quantitative PCR. This was commensurate with two- to fivefold increases in maximum force production to KCl depolarization, calcium, and the α-adrenergic agonist phenylephrine, and increasing systolic blood pressure. Rats exposed to maternal separation stress as neonates had markedly accelerated trajectories of maturation of arterial contractile gene expression and function measured at PND14 or PND21 (weaning), 1 wk after the end of the stress protocol. This was suppressed by the α-adrenergic receptor blocker terazosin (0.5 mg·kg ip(-1)·day(-1)), indicating dependence on stress activation of sympathetic signaling. Due to the continued maturation of MAs in control rats, by sexual maturity (PND35) and into adulthood, no differences were observed in arterial function or response to a second stressor in rats stressed as neonates. Thus early life stress misprograms resistance artery smooth muscle, increasing vasoconstrictor function and blood pressure. This effect wanes in later stages, suggesting plasticity during arterial maturation. Further studies are indicated to determine whether stress in different periods of arterial maturation may cause misprogramming persisting through maturity and the potential salutary effect of α-adrenergic blockade in suppression of this response.


Assuntos
Pressão Sanguínea/genética , Regulação da Expressão Gênica no Desenvolvimento , Privação Materna , Artérias Mesentéricas/metabolismo , Músculo Liso Vascular/metabolismo , RNA Mensageiro/metabolismo , Estresse Psicológico/genética , Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Animais , Animais Recém-Nascidos , Pressão Sanguínea/efeitos dos fármacos , Artérias Mesentéricas/crescimento & desenvolvimento , Proteínas Musculares/genética , Músculo Liso Vascular/crescimento & desenvolvimento , Cadeias Pesadas de Miosina/genética , Quinase de Cadeia Leve de Miosina/genética , Fenilefrina/farmacologia , Fosfoproteínas/genética , Prazosina/análogos & derivados , Prazosina/farmacologia , Proteína Fosfatase 1/genética , Ratos , Receptores Adrenérgicos alfa 1/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estresse Psicológico/metabolismo , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/genética , Vasoconstritores/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatação/genética
17.
Am J Physiol Heart Circ Physiol ; 308(9): H1039-50, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25724497

RESUMO

Microcirculatory dysfunction may cause tissue malperfusion and progression to organ failure in the later stages of sepsis, but the role of smooth muscle contractile dysfunction is uncertain. Mice were given intraperitoneal LPS, and mesenteric arteries were harvested at 6-h intervals for analyses of gene expression and contractile function by wire myography. Contractile (myosin and actin) and regulatory [myosin light chain kinase and phosphatase subunits (Mypt1, CPI-17)] mRNAs and proteins were decreased in mesenteric arteries at 24 h concordant with reduced force generation to depolarization, Ca(2+), and phenylephrine. Vasodilator sensitivity to DEA/nitric oxide (NO) and cGMP under Ca(2+) clamp were increased at 24 h after LPS concordant with a switch to Mypt1 exon 24- splice variant coding for a leucine zipper (LZ) motif required for PKG-1α activation of myosin phosphatase. This was reproduced by smooth muscle-specific deletion of Mypt1 exon 24, causing a shift to the Mypt1 LZ+ isoform. These mice had significantly lower resting blood pressure than control mice but similar hypotensive responses to LPS. The vasodilator sensitivity of wild-type mice to DEA/NO, but not cGMP, was increased at 6 h after LPS. This was abrogated in mice with a redox dead version of PKG-1α (Cys42Ser). Enhanced vasorelaxation in early endotoxemia is mediated by redox signaling through PKG-1α but in later endotoxemia by myosin phosphatase isoform shifts enhancing sensitivity to NO/cGMP as well as smooth muscle atrophy. Muscle atrophy and modulation may be a novel target to suppress microcirculatory dysfunction; however, inactivation of inducible NO synthase, treatment with the IL-1 antagonist IL-1ra, or early activation of α-adrenergic signaling did not suppressed this response.


Assuntos
Lipopolissacarídeos , Proteínas Musculares/metabolismo , Músculo Liso Vascular/enzimologia , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Óxido Nítrico/metabolismo , Fosfoproteínas/metabolismo , Sepse/enzimologia , Transdução de Sinais , Vasodilatação , Animais , GMP Cíclico/metabolismo , Proteína Quinase Dependente de GMP Cíclico Tipo I/deficiência , Proteína Quinase Dependente de GMP Cíclico Tipo I/genética , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica , Genótipo , Peptídeos e Proteínas de Sinalização Intracelular , Isoenzimas , Masculino , Artérias Mesentéricas/enzimologia , Artérias Mesentéricas/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microcirculação , Proteínas Musculares/genética , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiopatologia , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/enzimologia , Atrofia Muscular/fisiopatologia , Quinase de Cadeia Leve de Miosina/deficiência , Quinase de Cadeia Leve de Miosina/genética , Fosfatase de Miosina-de-Cadeia-Leve/genética , Óxido Nítrico Sintase Tipo II/deficiência , Óxido Nítrico Sintase Tipo II/genética , Oxirredução , Fenótipo , Fosfoproteínas/genética , RNA Mensageiro/metabolismo , Sepse/induzido quimicamente , Sepse/genética , Sepse/fisiopatologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Vasoconstritores/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
18.
Am J Physiol Heart Circ Physiol ; 306(2): H163-72, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24186099

RESUMO

Each regional circulation has unique requirements for blood flow and thus unique mechanisms by which it is regulated. In this review we consider the role of smooth muscle contractile diversity in determining the unique properties of selected regional circulations and its potential influence on drug targeting in disease. Functionally smooth muscle diversity can be dichotomized into fast versus slow contractile gene programs, giving rise to phasic versus tonic smooth muscle phenotypes, respectively. Large conduit vessel smooth muscle is of the tonic phenotype; in contrast, there is great smooth muscle contractile diversity in the other parts of the vascular system. In the renal circulation, afferent and efferent arterioles are arranged in series and determine glomerular filtration rate. The afferent arteriole has features of phasic smooth muscle, whereas the efferent arteriole has features of tonic smooth muscle. In the splanchnic circulation, the portal vein and hepatic artery are arranged in parallel and supply blood for detoxification and metabolism to the liver. Unique features of this circulation include the hepatic-arterial buffer response to regulate blood flow and the phasic contractile properties of the portal vein. Unique features of the pulmonary circulation include the low vascular resistance and hypoxic pulmonary vasoconstriction, the latter attribute inherent to the smooth muscle cells but the mechanism uncertain. We consider how these unique properties may allow for selective drug targeting of regional circulations for therapeutic benefit and point out gaps in our knowledge and areas in need of further investigation.


Assuntos
Circulação Hepática , Contração Muscular , Músculo Liso Vascular/metabolismo , Circulação Pulmonar , Circulação Renal , Animais , Humanos , Músculo Liso Vascular/fisiologia
19.
Am J Physiol Heart Circ Physiol ; 307(4): H563-73, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24929853

RESUMO

There is evidence for developmental origins of vascular dysfunction yet little understanding of maturation of vascular smooth muscle (VSM) of regional circulations. We measured maturational changes in expression of myosin phosphatase (MP) and the broader VSM gene program in relation to mesenteric small resistance artery (SRA) function. We then tested the role of the sympathetic nervous system (SNS) in programming of SRAs and used genetically engineered mice to define the role of MP isoforms in the functional maturation of the mesenteric circulation. Maturation of rat mesenteric SRAs as measured by qPCR and immunoblotting begins after the second postnatal week and is not complete until maturity. It is characterized by induction of markers of VSM differentiation (smMHC, γ-, α-actin), CPI-17, an inhibitory subunit of MP and a key target of α-adrenergic vasoconstriction, α1-adrenergic, purinergic X1, and neuropeptide Y1 receptors of sympathetic signaling. Functional correlates include maturational increases in α-adrenergic-mediated force and calcium sensitization of force production (MP inhibition) measured in first-order mesenteric arteries ex vivo. The MP regulatory subunit Mypt1 E24+/LZ- isoform is specifically upregulated in SRAs during maturation. Conditional deletion of mouse Mypt1 E24 demonstrates that splicing of E24 causes the maturational reduction in sensitivity to cGMP-mediated vasorelaxation (MP activation). Neonatal chemical sympathectomy (6-hydroxydopamine) suppresses maturation of SRAs with minimal effect on a conduit artery. Mechanical denervation of the mature rat renal artery causes a reversion to the immature gene program. We conclude that the SNS captures control of the mesenteric circulation by programming maturation of the SRA smooth muscle.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Artérias Mesentéricas/metabolismo , Artéria Renal/metabolismo , Sistema Nervoso Simpático/fisiologia , Actinas/genética , Actinas/metabolismo , Animais , Diferenciação Celular , GMP Cíclico/metabolismo , Masculino , Artérias Mesentéricas/crescimento & desenvolvimento , Artérias Mesentéricas/inervação , Camundongos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Quinase de Cadeia Leve de Miosina/genética , Quinase de Cadeia Leve de Miosina/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/genética , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Ratos , Ratos Sprague-Dawley , Artéria Renal/crescimento & desenvolvimento , Artéria Renal/inervação , Sistema Nervoso Simpático/crescimento & desenvolvimento , Vasoconstrição , Vasodilatadores/farmacologia
20.
J Am Assoc Lab Anim Sci ; 63(2): 190-200, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38191147

RESUMO

The Guide for the Care and Use of Laboratory Animals recommends mice be pair or group housed and provided with nesting materials. These provisions support social interactions and are also critical for thermoregulatory behaviors such as huddling and burrowing. However, studies of fluid and electrolyte balance and digestive function may involve use of metabolic caging (MC) systems in which mice are housed individually on wire-mesh floors that permit quantitative collection of urine and feces. MC housing prevents mice from performing their typical huddling and burrowing behaviors. Housing in MC can cause weight loss and behavioral changes in rodents. Here, we tested the hypothesis that MC housing of mice at standard room temperature (SRT, 22 to 23 °C) exposes them to cold stress, which causes metabolic changes in the mice as compared with standard housing. We hypothesized that performing MC studies at a thermoneutral temperature (TNT, 30 °C) would minimize these changes. Fluid, electrolyte, and energy balance and body composition were assessed in male and female C57BL/6J mice housed at SRT or TNT in MC, static microisolation cages, or a multiplexed metabolic phenotyping system designed to mimic static microisolation cages (Promethion, Sable Systems International). In brief, as compared with MC housing at SRT, MC housing at TNT was associated with lower food intake and energy expenditure, absence of weight loss, and lower urine and fecal corticosterone levels. These results indicate that housing in MC at SRT causes cold stress that can be mitigated if MC studies are performed at TNT.


Assuntos
Metabolismo Energético , Abrigo para Animais , Camundongos Endogâmicos C57BL , Animais , Camundongos Endogâmicos C57BL/fisiologia , Feminino , Masculino , Metabolismo Energético/fisiologia , Camundongos/fisiologia , Equilíbrio Hidroeletrolítico/fisiologia , Temperatura , Composição Corporal/fisiologia , Eletrólitos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa