RESUMO
The assembly of organized colonies is the earliest manifestation in the derivation or induction of pluripotency in vitro. However, the necessity and origin of this assemblance is unknown. Here, we identify human pluripotent founder cells (hPFCs) that initiate, as well as preserve and establish, pluripotent stem cell (PSC) cultures. PFCs are marked by N-cadherin expression (NCAD+) and reside exclusively at the colony boundary of primate PSCs. As demonstrated by functional analysis, hPFCs harbor the clonogenic capacity of PSC cultures and emerge prior to commitment events or phenotypes associated with pluripotent reprogramming. Comparative single-cell analysis with pre- and post-implantation primate embryos revealed hPFCs share hallmark properties with primitive endoderm (PrE) and can be regulated by non-canonical Wnt signaling. Uniquely informed by primate embryo organization in vivo, our study defines a subset of founder cells critical to the establishment pluripotent state.
Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Diferenciação Celular , Linhagem da Célula , Desenvolvimento Embrionário , Células-Tronco Embrionárias/metabolismo , Endoderma/metabolismo , Expressão Gênica/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Análise de Célula Única , Via de Sinalização WntRESUMO
Induced pluripotent stem cell reprogramming has provided critical insights into disease processes by modeling the genetics and related clinical pathophysiology. Human cancer represents highly diverse genetics, as well as inter- and intra-patient heterogeneity, where cellular model systems capable of capturing this disease complexity would be invaluable. Acute myeloid leukemia (AML) represents one of most heterogeneous cancers and has been divided into genetic subtypes correlated with unique risk stratification over the decades. Here, we report our efforts to induce pluripotency from the heterogeneous population of human patients that represents this disease in the clinic. Using robust optimized reprogramming methods, we demonstrate that reprogramming of AML cells harboring leukemic genomic aberrations is a rare event with the exception of those with de novo mixed-lineage leukemia (MLL) mutations that can be reprogrammed and model drug responses in vitro. Our findings indicate that unlike hematopoietic cells devoid of genomic aberrations, AML cells harboring driver mutations are refractory to reprogramming. Expression of MLL fusion proteins in AML cells did not contribute to induced reprogramming success, which continued to select for patient derived cells devoid of AML patient-specific aberrations. Our study reveals that unanticipated blockades to achieving pluripotency reside within the majority of transformed AML patient cells. Stem Cells 2017;35:2095-2102.
Assuntos
Reprogramação Celular , Hematopoese , Células-Tronco Pluripotentes Induzidas/patologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Mutação/genética , Células da Medula Óssea/patologia , Humanos , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas de Fusão Oncogênica/metabolismoRESUMO
Despite most acute myeloid leukemia (AML) patients entering remission following chemotherapy, outcomes remain poor due to surviving leukemic cells that contribute to relapse. The nature of these enduring cells is poorly understood. Here, through temporal single-cell transcriptomic characterization of AML hierarchical regeneration in response to chemotherapy, we reveal a cell population: AML regeneration enriched cells (RECs). RECs are defined by CD74/CD68 expression, and although derived from leukemic stem cells (LSCs), are devoid of stem/progenitor capacity. Based on REC in situ proximity to CD34-expressing cells identified using spatial transcriptomics on AML patient bone marrow samples, RECs demonstrate the ability to augment or reduce leukemic regeneration in vivo based on transfusion or depletion, respectively. Furthermore, RECs are prognostic for patient survival as well as predictive of treatment failure in AML cohorts. Our study reveals RECs as a previously unknown functional catalyst of LSC-driven regeneration contributing to the non-canonical framework of AML regeneration.
Assuntos
Perfilação da Expressão Gênica , Leucemia Mieloide Aguda , Humanos , Prognóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Células-Tronco/metabolismoRESUMO
Screening of primary patient acute myeloid leukemia (AML) cells is challenging based on intrinsic characteristics of human AML disease and patient-specific conditions required to sustain AML cells in culture. This is further complicated by inter- and intra-patient heterogeneity, and "contaminating" normal cells devoid of molecular AML mutations. Derivation of induced pluripotent stem cells (iPSCs) from human somatic cells has provided approaches for the development of patient-specific models of disease biology and has recently included AML. Although reprogramming patient-derived cancer cells to pluripotency allows for aspects of disease modeling, the major limitation preventing applications and deeper insights using AML-iPSCs is the rarity of success and limited subtypes of AML disease that can be captured by reprogramming to date. Here, we tested and refined methods including de novo, xenografting, naïve versus prime states and prospective isolation for reprogramming AML cells using a total of 22 AML patient samples representing the wide variety of cytogenetic abnormalities. These efforts allowed us to derive genetically matched healthy control (isogenic) lines and capture clones found originally in patients with AML. Using fluorescently activated cell sorting, we revealed that AML reprogramming is linked to the differentiation state of diseased tissue, where use of myeloid marker CD33 compared to the stem cell marker, CD34, reduces reprogramming capture of AML+ clones. Our efforts provide a platform for further optimization of AML-iPSC generation, and a unique library of iPSC derived from patients with AML for detailed cellular and molecular study.
Assuntos
Células-Tronco Pluripotentes Induzidas , Leucemia Mieloide Aguda , Humanos , Reprogramação Celular/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Diferenciação Celular/genética , MutaçãoRESUMO
We systematically investigate functional and molecular measures of stemness in patients with acute myeloid leukemia (AML) using a cohort of 121 individuals. We confirm that the presence of leukemic stem cells (LSCs) detected through in vivo xenograft transplantation is associated with poor survival. However, the measurement of leukemic progenitor cells (LPCs) through in vitro colony-forming assays provides an even stronger predictor of overall and event-free survival. LPCs not only capture patient-specific mutations but also retain serial re-plating ability, demonstrating their biological relevance. Notably, LPC content represents an independent prognostic factor in multivariate analyses including clinical guidelines of risk stratification. Our findings suggest that LPCs provide a robust functional measure of AML, enabling quantitative and rapid assessment of a wide range of patients. This highlights the potential of LPCs as a valuable prognostic factor in AML management.
Assuntos
Leucemia Mieloide Aguda , Humanos , Prognóstico , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genéticaRESUMO
Overlapping principles of embryonic and tumor biology have been described, with recent multi-omics campaigns uncovering shared molecular profiles between human pluripotent stem cells (hPSCs) and adult tumors. Here, using a chemical genomic approach, we provide biological evidence that early germ layer fate decisions of hPSCs reveal targets of human cancers. Single-cell deconstruction of hPSCs-defined subsets that share transcriptional patterns with transformed adult tissues. Chemical screening using a unique germ layer specification assay for hPSCs identified drugs that enriched for compounds that selectively suppressed the growth of patient-derived tumors corresponding exclusively to their germ layer origin. Transcriptional response of hPSCs to germ layer inducing drugs could be used to identify targets capable of regulating hPSC specification as well as inhibiting adult tumors. Our study demonstrates properties of adult tumors converge with hPSCs drug induced differentiation in a germ layer specific manner, thereby expanding our understanding of cancer stemness and pluripotency.
Assuntos
Neoplasias , Células-Tronco Pluripotentes , Humanos , Diferenciação Celular/fisiologia , Neoplasias/tratamento farmacológico , Neoplasias/genética , GenômicaRESUMO
The discovery and development of effective drugs for cancer patients has seen limited success in the clinic from phase I trials onward. The high attrition rate of current drug development approaches requires careful evaluation to provide a better understanding of the factors that correlate with or predict positive clinical outcomes. Here, we examine pre-clinical drug development approaches and conduct a meta-analysis of 2918 clinical studies involving 466 unique drugs tested in clinical trials for acute myeloid leukemia (AML). Our goal was to determine whether there are key shared pre-clinical characteristics that ultimately relate to successful or unsuccessful drugs in patients. We provide an evidence-based recommendation for the use of phenotypic drug discovery rather than other methods during pre-clinical development. Although our analysis was limited to AML, similar analyses are likely to be informative for other tumor-specific drug discovery campaigns, informing and improving the foundational discovery screens and platforms for other cancers.
Assuntos
Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Descoberta de DrogasRESUMO
The generation of human hematopoietic stem cells (HSCs) from human pluripotent stem cells (hPSCs) represents a major goal in regenerative medicine and is believed would follow principles of early development. HSCs arise from a type of endothelial cell called a "hemogenic endothelium" (HE), and human HSCs are experimentally detected by transplantation into SCID or other immune-deficient mouse recipients, termed SCID-Repopulating Cells (SRC). Recently, SRCs were detected by forced expression of seven transcription factors (TF) (ERG, HOXA5, HOXA9, HOXA10, LCOR, RUNX1, and SPI1) in hPSC-derived HE, suggesting these factors are deficient in hPSC differentiation to HEs required to generate HSCs. Here we derived PECAM-1-, Flk-1-, and VE-cadherin-positive endothelial cells that also lack CD45 expression (PFVCD45-) which are solely responsible for hematopoietic output from iPSC lines reprogrammed from AML patients. Using HEs derived from AML patient iPSCs devoid of somatic leukemic aberrations, we sought to generate putative SRCs by the forced expression of 7TFs to model autologous HSC transplantation. The expression of 7TFs in hPSC-derived HE cells from an enhanced hematopoietic progenitor capacity was present in vitro, but failed to acquire SRC activity in vivo. Our findings emphasize the benefits of forced TF expression, along with the continued challenges in developing HSCs for autologous-based therapies from hPSC sources.
Assuntos
Hemangioblastos , Células-Tronco Pluripotentes Induzidas , Leucemia Mieloide Aguda , Animais , Hemangioblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Leucemia Mieloide Aguda/metabolismo , Camundongos , Camundongos SCID , Fatores de Transcrição/metabolismoRESUMO
Histone variants (HVs) are a subfamily of epigenetic regulators implicated in embryonic development, but their role in human stem cell fate remains unclear. Here, we reveal that the phosphorylation state of the HV H2A.X (γH2A.X) regulates self-renewal and differentiation of human pluripotent stem cells (hPSCs) and leukemic progenitors. As demonstrated by CRISPR-Cas deletion, H2A.X is essential in maintaining normal hPSC behavior. However, reduced levels of γH2A.X enhances hPSC differentiation toward the hematopoietic lineage with concomitant inhibition of neural development. In contrast, activation and sustained levels of phosphorylated H2A.X enhance hPSC neural fate while suppressing hematopoiesis. This controlled lineage bias correlates to occupancy of γH2A.X at genomic loci associated with ectoderm versus mesoderm specification. Finally, drug modulation of H2A.X phosphorylation overcomes differentiation block of patient-derived leukemic progenitors. Our study demonstrates HVs may serve to regulate pluripotent cell fate and that this biology could be extended to somatic cancer stem cell control.
Assuntos
Autorrenovação Celular/fisiologia , Histonas/metabolismo , Células-Tronco Neoplásicas/citologia , Células-Tronco Pluripotentes/citologia , Sistemas CRISPR-Cas/genética , Diferenciação Celular , Linhagem da Célula , Ectoderma/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Histonas/deficiência , Histonas/genética , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Mesoderma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Nucleossomos/metabolismo , Fosforilação , Células-Tronco Pluripotentes/metabolismoRESUMO
The aberrant expression of dopamine receptors (DRDs) in acute myeloid leukemia (AML) cells has encouraged the repurposing of DRD antagonists such as thioridazine (TDZ) as anti-leukemic agents. Here, we access patient cells from a Phase I dose escalation trial to resolve the cellular and molecular bases of response to TDZ, and we extend these findings to an additional independent cohort of AML patient samples tested preclinically. We reveal that in DRD2+ AML patients, DRD signaling in leukemic progenitors provides leukemia-exclusive networks of sensitivity that spare healthy hematopoiesis. AML progenitor cell suppression can be increased by the isolation of the positive enantiomer from the racemic TDZ mixture (TDZ+), and this is accompanied by reduced cardiac liability. Our study indicates that the development of DRD-directed therapies provides a targeting strategy for a subset of AML patients and potentially other cancers that acquire DRD expression upon transformation from healthy tissue.
Assuntos
Hematopoese/fisiologia , Leucemia Mieloide Aguda/tratamento farmacológico , Células-Tronco Neoplásicas/metabolismo , Receptores Dopaminérgicos/metabolismo , Tioridazina/metabolismo , Humanos , Leucemia Mieloide Aguda/metabolismo , Transdução de Sinais/fisiologiaRESUMO
Identifying precise targets of individual cancers remains challenging. Chronic lymphocytic leukemia (CLL) represents the most common adult hematologic malignancy, and trisomy 12 (tri12) represents a quarter of CLL patients. We report that tri12 human pluripotent stem cells (hPSCs) allow for the identification of gene networks and targets specific to tri12, which are controlled by comparative normal PSCs. Identified targets are upregulated in tri12 leukemic cells from a cohort of 159 patients with monoclonal B cell lymphocytosis and CLL. tri12 signaling patterns significantly influence progression-free survival. Actionable targets are identified using high-content drug testing and functionally validated in an additional 44 CLL patient samples. Using xenograft models, interleukin-1 receptor-associated kinase 4 (IRAK4) inhibitor is potent and selective against human tri12 CLL versus healthy patient-derived xenografts. Our study uses hPSCs to uncover targets from genetic aberrations and apply them to cancer. These findings provide immediate translational potential as biomarkers and targets for therapeutic intervention.
Assuntos
Leucemia Linfocítica Crônica de Células B/genética , Células-Tronco Pluripotentes/metabolismo , Trissomia/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular , Progressão da Doença , Feminino , Dosagem de Genes , Redes Reguladoras de Genes , Humanos , Leucemia Linfocítica Crônica de Células B/patologia , Masculino , Camundongos Endogâmicos NOD , Pessoa de Meia-Idade , Modelos Genéticos , Reprodutibilidade dos Testes , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Human pluripotent stem cells (hPSCs) generate hematopoietic progenitor cells (HPCs) but fail to engraft xenograft models used to detect adult/somatic hematopoietic stem cells (HSCs) from donors. Recent progress to derive hPSC-derived HSCs has relied on cell-autonomous forced expression of transcription factors; however, the relationship of bone marrow to transplanted cells remains unknown. Here, we quantified a failure of hPSC-HPCs to survive even 24 hr post transplantation. Across several hPSC-HPC differentiation methodologies, we identified the lack of CXCR4 expression and function. Ectopic CXCR4 conferred CXCL12 ligand-dependent signaling of hPSC-HPCs in biochemical assays and increased migration/chemotaxis, hematopoietic progenitor capacity, and survival and proliferation following in vivo transplantation. This was accompanied by a transcriptional shift of hPSC-HPCs toward somatic/adult sources, but this approach failed to produce long-term HSC xenograft reconstitution. Our results reveal that networks involving CXCR4 should be targeted to generate putative HSCs with in vivo function from hPSCs.
Assuntos
Quimiocina CXCL12/metabolismo , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Pluripotentes/metabolismo , Receptores CXCR4/metabolismo , Transdução de Sinais , Animais , Células da Medula Óssea/metabolismo , Humanos , Cinética , CamundongosRESUMO
Acute myeloid leukaemia (AML) is distinguished by the generation of dysfunctional leukaemic blasts, and patients characteristically suffer from fatal infections and anaemia due to insufficient normal myelo-erythropoiesis. Direct physical crowding of bone marrow (BM) by accumulating leukaemic cells does not fully account for this haematopoietic failure. Here, analyses from AML patients were applied to both in vitro co-culture platforms and in vivo xenograft modelling, revealing that human AML disease specifically disrupts the adipocytic niche in BM. Leukaemic suppression of BM adipocytes led to imbalanced regulation of endogenous haematopoietic stem and progenitor cells, resulting in impaired myelo-erythroid maturation. In vivo administration of PPARγ agonists induced BM adipogenesis, which rescued healthy haematopoietic maturation while repressing leukaemic growth. Our study identifies a previously unappreciated axis between BM adipogenesis and normal myelo-erythroid maturation that is therapeutically accessible to improve symptoms of BM failure in AML via non-cell autonomous targeting of the niche.
Assuntos
Adipócitos/patologia , Medula Óssea/patologia , Eritropoese/fisiologia , Leucemia Mieloide Aguda/patologia , Adipogenia/fisiologia , Adulto , Idoso , Animais , Medula Óssea/metabolismo , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Técnicas de Cocultura/métodos , Feminino , Células-Tronco Hematopoéticas , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Pessoa de Meia-Idade , PPAR gama/metabolismo , Células-Tronco/patologia , Adulto JovemRESUMO
Protein aggregation is a common challenge in the manufacturing of biological products. It is possible to minimize the extent of aggregation through timely measurement and in-depth characterization of aggregation. In this study, we demonstrated the use of dynamic light scattering (DLS) to monitor inclusion body (IB) solubilization, protein refolding, and aggregation near the production line of a recombinant protein-based vaccine candidate. Our results were in good agreement with those measured by size-exclusion chromatography. DLS was also used to characterize the mechanism of aggregation. As DLS is a quick, nonperturbing technology, it can potentially be used as an at-line process analytical technology to ensure complete IB solubilization and aggregate-free refolding.