Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Rev ; 103(4): 2679-2757, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37382939

RESUMO

Mechanisms underlying mechanical overload-induced skeletal muscle hypertrophy have been extensively researched since the landmark report by Morpurgo (1897) of "work-induced hypertrophy" in dogs that were treadmill trained. Much of the preclinical rodent and human resistance training research to date supports that involved mechanisms include enhanced mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling, an expansion in translational capacity through ribosome biogenesis, increased satellite cell abundance and myonuclear accretion, and postexercise elevations in muscle protein synthesis rates. However, several lines of past and emerging evidence suggest that additional mechanisms that feed into or are independent of these processes are also involved. This review first provides a historical account of how mechanistic research into skeletal muscle hypertrophy has progressed. A comprehensive list of mechanisms associated with skeletal muscle hypertrophy is then outlined, and areas of disagreement involving these mechanisms are presented. Finally, future research directions involving many of the discussed mechanisms are proposed.


Assuntos
Músculo Esquelético , Transdução de Sinais , Humanos , Animais , Cães , Músculo Esquelético/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Biossíntese de Proteínas , Hipertrofia/metabolismo , Mamíferos/metabolismo
2.
Eur J Appl Physiol ; 124(7): 1969-1977, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38300319

RESUMO

PURPOSE: Electric bikes (EB) are a form of active transportation with demonstrated health benefits. The purpose of this study was to determine the influence of riding an EB for one week on indices of cardiometabolic health in middle-aged adults. METHODS: Adults (n = 22; age = 57.1 ± 11.3 year; BMI = 27.7 ± 4.9) participated in a 2 week study. During Week 1, participants were instructed to continue regular activities. Starting Week 2 participants were provided an EB to ride at least 3 days for a minimum of 30 min·day-1. Physical activity (PA) and glucose were measured continuously. Body composition, blood lipids, glucose, insulin, hemoglobin A1c (HbA1c), plasma endothelin-1 (ET-1), and carotid-femoral pulse wave velocity (cf-PWV) were measured on days 1 and 14.Data and Statistical analyses or Statistics. Each participant served as their own control. Paired t-tests compared dependent variables between week 1 (without EB) and week 2 (with EB). RESULTS: When provided an EB for one week, moderate to vigorous PA increased by 6-9 min·day-1 (P < 0.05) and sedentary time decreased by ~ 77 min·day-1 (P < 0.05). Data from 24 h continuous glucose monitoring showed the percentage of time in healthy range (70-120 mg·dl-1 glucose) increased (P < 0.05) from week 1 to week 2. Compared to day 1, cf-PWV was lower at day 14 (P < 0.05) following one week of riding an EB. CONCLUSION: Moderately-active, middleaged adults showed improved continuous glucose regulation and lower central arterial stiffness following one week of riding an EB.


Assuntos
Glicemia , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Glicemia/metabolismo , Ciclismo/fisiologia , Exercício Físico/fisiologia , Hemoglobinas Glicadas/metabolismo , Insulina/sangue , Idoso , Adulto , Análise de Onda de Pulso , Lipídeos/sangue , Endotelina-1/sangue
3.
Am J Physiol Endocrinol Metab ; 325(2): E113-E118, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37315157

RESUMO

Several factors affect muscle protein synthesis (MPS) in the postabsorptive state. Extreme physical inactivity (e.g., bedrest) may reduce basal MPS, whereas walking may augment basal MPS. We hypothesized that outpatients would have a higher postabsorptive MPS than inpatients. To test this hypothesis, we conducted a retrospective analysis. We compared 152 outpatient participants who arrived at the research site the morning of the MPS assessment with 350 Inpatient participants who had an overnight stay in the hospital unit before the MPS assessment the following morning. We used stable isotopic methods and collected vastus lateralis biopsies ∼2 to 3 h apart to assess mixed MPS. MPS was ∼12% higher (P < 0.05) for outpatients than inpatients. Within a subset of participants, we discovered that after instruction to limit activity, outpatients (n = 13) took 800 to 900 steps in the morning to arrive at the unit, seven times more steps than inpatients (n = 12). We concluded that an overnight stay in the hospital as an inpatient is characterized by reduced morning activity and causes a slight but significant reduction in MPS compared with participants studied as outpatients. Researchers should be aware of physical activity status when designing and interpreting MPS results.NEW & NOTEWORTHY The postabsorptive muscle protein synthesis rate is lower in the morning after an overnight inpatient hospital stay compared with an outpatient visit. Although only a minimal amount of steps was conducted by outpatients (∼900), this was enough to increase postabsorptive muscle protein synthesis rate.


Assuntos
Pacientes Internados , Proteínas Musculares , Humanos , Pacientes Ambulatoriais , Estudos Retrospectivos , Biossíntese de Proteínas
4.
FASEB J ; 35(9): e21862, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34416035

RESUMO

Loss of muscle mass and strength after disuse followed by impaired muscle recovery commonly occurs with aging. Metformin (MET) and leucine (LEU) individually have shown positive effects in skeletal muscle during atrophy conditions but have not been evaluated in combination nor tested as a remedy to enhance muscle recovery following disuse atrophy in aging. The purpose of this study was to determine if a dual treatment of metformin and leucine (MET + LEU) would prevent disuse-induced atrophy and/or promote muscle recovery in aged mice and if these muscle responses correspond to changes in satellite cells and collagen remodeling. Aged mice (22-24 months) underwent 14 days of hindlimb unloading (HU) followed by 7 or 14 days of reloading (7 or 14 days RL). MET, LEU, or MET + LEU was administered via drinking water and were compared to Vehicle (standard drinking water) and ambulatory baseline. We observed that during HU, MET + LEU resolved whole body grip strength and soleus muscle specific force decrements caused by HU. Gastrocnemius satellite cell abundance was increased with MET + LEU treatment but did not alter muscle size during disuse or recovery conditions. Moreover, MET + LEU treatment alleviated gastrocnemius collagen accumulation caused by HU and increased collagen turnover during 7 and 14 days RL driven by a decrease in collagen IV content. Transcriptional pathway analysis revealed that MET + LEU altered muscle hallmark pathways related to inflammation and myogenesis during HU. Together, the dual treatment of MET and LEU was able to increase muscle function, satellite cell content, and reduce collagen accumulation, thus improving muscle quality during disuse and recovery in aging.


Assuntos
Envelhecimento , Colágeno/metabolismo , Leucina/uso terapêutico , Metformina/uso terapêutico , Músculo Esquelético/efeitos dos fármacos , Atrofia Muscular/prevenção & controle , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Fibrose/tratamento farmacológico , Elevação dos Membros Posteriores , Imunoglobulina G/análise , Leucina/farmacologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Metformina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Desenvolvimento Muscular/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Força Muscular/efeitos dos fármacos , Músculo Esquelético/citologia , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Tamanho do Órgão/efeitos dos fármacos , RNA-Seq , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/patologia , Transdução de Sinais/efeitos dos fármacos
5.
Am J Physiol Cell Physiol ; 320(4): C566-C576, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33406027

RESUMO

Muscle progenitor cells (MPCs) in aged muscle exhibit impaired activation into proliferating myoblasts, thereby impairing fusion and changes in secreted factors. The antihyperglycemic drug metformin, currently studied as a candidate antiaging therapy, may have potential to promote function of aged MPCs. We evaluated the impact of 2 wk of metformin ingestion on primary myoblast function measured in vitro after being extracted from muscle biopsies of older adult participants. MPCs were isolated from muscle biopsies of community-dwelling older (4 male/4 female, ∼69 yr) adult participants before (pre) and after (post) the metformin ingestion period and studied in vitro. Cells were extracted from Young participants (4 male/4 female, ∼27 yr) to serve as a "youthful" comparator. MPCs from Old subjects had lower fusion index and myoblast-endothelial cell homing compared with Young, while Old MPCs, extracted after short-term metformin ingestion, performed better at both tasks. Transcriptomic analyses of Old MPCs (vs. Young) revealed decreased histone expression and increased myogenic pathway activity, yet this phenotype was partially restored by metformin. However, metformin ingestion exacerbated pathways related to inflammation signaling. Together, this study demonstrated that 2 wk of metformin ingestion induced persistent effects on Old MPCs that improved function in vitro and altered their transcriptional signature including histone and chromatin remodeling.


Assuntos
Envelhecimento Saudável , Hipoglicemiantes/administração & dosagem , Metformina/administração & dosagem , Mioblastos Esqueléticos/efeitos dos fármacos , Adulto , Fatores Etários , Idoso , Comunicação Celular , Fusão Celular , Movimento Celular , Células Cultivadas , Técnicas de Cocultura , Esquema de Medicação , Células Endoteliais/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Mioblastos Esqueléticos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transcriptoma/efeitos dos fármacos
6.
Am J Physiol Regul Integr Comp Physiol ; 318(3): R503-R511, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31994900

RESUMO

Toll-like receptor 4 (TLR4) is a proposed mediator of ceramide accumulation, muscle atrophy, and insulin resistance in skeletal muscle. It is currently unknown whether pharmacological inhibition of TLR4, using the TLR4-specific inhibitor TAK-242 during muscle disuse, is able to prevent changes in intracellular ceramide species and consequently preserve muscle size and insulin sensitivity in physically active mice. To address this question, we subjected running wheel-conditioned C57BL/6 male mice (13 wk old; ∼10/group) to 7 days of hindlimb suspension (HS), 7 days of continued wheel running (WR), or daily injections of TAK-242 during HS (HS + TAK242) for 7 days. We measured hindlimb muscle morphology, intramuscular and liver ceramide content, HOMA-IR, mRNA proxies of ceramide turnover and lipid trafficking, and muscle fatty acid and glycerolipid content. As a result, soleus and liver ceramide abundance was greater (P < 0.05) in HS vs. WR but was reduced with TLR4 inhibition (HS + TAK-242 vs. HS). Muscle mass declined (P < 0.01) with HS (vs. WR), but TLR4 inhibition did not prevent this loss (soleus: P = 0.08; HS vs. HS + TAK-242). HOMA-IR was impaired (P < 0.01) in HS versus WR mice, but only fasting blood glucose was reduced with TLR4 inhibition (HS + TAK-242 vs HS, P < 0.05). Robust decreases in muscle Spt2 and Cd36 mRNA and muscle lipidomic trafficking may partially explain reductions in ceramides with TLR4 inhibition. In conclusion, pharmacological TLR4 inhibition in wheel-conditioned mice prevented ceramide accumulation during the early phase of hindlimb suspension (7 days) but had little effect on muscle size and insulin sensitivity.


Assuntos
Atividade Motora/fisiologia , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Receptor 4 Toll-Like/genética , Animais , Ceramidas/metabolismo , Elevação dos Membros Posteriores/fisiologia , Resistência à Insulina , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Receptor 4 Toll-Like/metabolismo
7.
Int J Mol Sci ; 21(4)2020 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-32098447

RESUMO

: Intramuscular lipid accumulation has been associated with insulin resistance (IR), aging, diabetes, dyslipidemia, and obesity. A substantial body of evidence has implicated ceramides, a sphingolipid intermediate, as potent antagonists of insulin action that drive insulin resistance. Indeed, genetic mouse studies that lower ceramides are potently insulin sensitizing. Surprisingly less is known about how physical activity (skeletal muscle contraction) regulates ceramides, especially in light that muscle contraction regulates insulin sensitivity. The purpose of this review is to critically evaluate studies (rodent and human) concerning the relationship between skeletal muscle ceramides and IR in response to increased physical activity. Our review of the literature indicates that chronic exercise reduces ceramide levels in individuals with obesity, diabetes, or hyperlipidemia. However, metabolically healthy individuals engaged in increased physical activity can improve insulin sensitivity independent of changes in skeletal muscle ceramide content. Herein we discuss these studies and provide context regarding the technical limitations (e.g., difficulty assessing the myriad ceramide species, the challenge of obtaining information on subcellular compartmentalization, and the paucity of flux measurements) and a lack of mechanistic studies that prevent a more sophisticated assessment of the ceramide pathway during increased contractile activity that lead to divergences in skeletal muscle insulin sensitivity.


Assuntos
Envelhecimento/fisiologia , Ceramidas/metabolismo , Exercício Físico/fisiologia , Resistência à Insulina/fisiologia , Músculo Esquelético/fisiologia , Condicionamento Físico Animal/fisiologia , Animais , Humanos , Camundongos , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Obesidade/fisiopatologia
8.
Am J Physiol Endocrinol Metab ; 317(1): E85-E98, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30964703

RESUMO

Impaired recovery of aged muscle following a disuse event is an unresolved issue facing the older adult population. Although investigations in young animals have suggested that rapid regrowth of skeletal muscle following a disuse event entails a coordinated involvement of skeletal muscle macrophages, this phenomenon has not yet been thoroughly tested as an explanation for impaired muscle recovery in aging. To examine this hypothesis, young (4-5 mo) and old (24-26 mo) male mice were examined as controls following 2 wk of hindlimb unloading (HU) and following 4 (RL4) and 7 (RL7) days of reloading after HU. Muscles were harvested to assess muscle weight, myofiber-specifc cross-sectional area, and skeletal muscle macrophages via immunofluorescence. Flow cytometry was used on gastrocnemius and soleus muscle (at RL4) single-cell suspensions to immunophenotype skeletal muscle macrophages. Our data demonstrated impaired muscle regrowth in aged compared with young mice following disuse, which was characterized by divergent muscle macrophage polarization patterns and muscle-specifc macrophage abundance. During reloading, young mice exhibited the classical increase in M1-like (MHC II+CD206-) macrophages that preceeded the increase in percentage of M2-like macrophages (MHC II-CD206+); however, old mice did not demonstrate this pattern. Also, at RL4, the soleus demonstrated reduced macrophage abundance with aging. Together, these data suggest that dysregulated macrophage phenotype patterns in aged muscle during recovery from disuse may be related to impaired muscle growth. Further investigation is needed to determine whether the dysregulated macrophage response in the old during regrowth from disuse is related to a reduced ability to recruit or activate specific immune cells.


Assuntos
Envelhecimento/fisiologia , Polaridade Celular/fisiologia , Elevação dos Membros Posteriores/fisiologia , Macrófagos/fisiologia , Músculo Esquelético/patologia , Atrofia Muscular/reabilitação , Animais , Ativação de Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/citologia , Músculo Esquelético/imunologia , Atrofia Muscular/patologia , Condicionamento Físico Animal/fisiologia
9.
Exerc Sport Sci Rev ; 47(4): 246-250, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31525165

RESUMO

Skeletal muscle immune cells, such as macrophages, are necessary for proper regrowth after muscle disuse. We suggest that the important role of macrophages concerning muscle regrowth after disuse is divergent compared with young mice (i.e., dysregulated) during the recovery period. Modulation of macrophages may be a promising future therapeutic target to enhance the impaired muscle growth during recovery from disuse in older adults.


Assuntos
Envelhecimento/patologia , Macrófagos/fisiologia , Músculo Esquelético/crescimento & desenvolvimento , Atrofia Muscular/fisiopatologia , Animais , Terapia por Exercício , Humanos , Imunoterapia , Modelos Animais , Músculo Esquelético/lesões , Atrofia Muscular/terapia
10.
J Physiol ; 596(21): 5217-5236, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30194727

RESUMO

KEY POINTS: Insulin sensitivity (as determined by a hyperinsulinaemic-euglyceamic clamp) decreased 15% after reduced activity. Despite not fully returning to baseline physical activity levels, insulin sensitivity unexpectedly, rebounded above that recorded before 2 weeks of reduced physical activity by 14% after the recovery period. Changes in insulin sensitivity in response to reduced activity were primarily driven by men but, not women. There were modest changes in ceramides (nuclear/myofibrillar fraction and serum) following reduced activity and recovery but, in the absence of major changes to body composition (i.e. fat mass), ceramides were not related to changes in inactivity-induced insulin sensitivity in healthy older adults. ABSTRACT: Older adults are at risk of physical inactivity as they encounter debilitating life events. It is not known how insulin sensitivity is affected by modest short-term physical inactivity and recovery in healthy older adults, nor how insulin sensitivity is related to changes in serum and muscle ceramide content. Healthy older adults (aged 64-82 years, five females, seven males) were assessed before (PRE), after 2 weeks of reduced physical activity (RA) and following 2 weeks of recovery (REC). Insulin sensitivity (hyperinsulinaemic-euglyceamic clamp), lean mass, muscle function, skeletal muscle subfraction, fibre-specific, and serum ceramide content and indices of skeletal muscle inflammation were assessed. Insulin sensitivity decreased by 15 ± 6% at RA (driven by men) but rebounded above PRE by 14 ± 5% at REC. Mid-plantar flexor muscle area and leg strength decreased with RA, although only muscle size returned to baseline levels following REC. Body fat did not change and only minimal changes in muscle inflammation were noted across the intervention. Serum and intramuscular ceramides (nuclear/myofibrillar fraction) were modestly increased at RA and REC. However, ceramides were not related to changes in inactivity-induced insulin sensitivity in healthy older adults. Short-term inactivity induced insulin resistance in older adults in the absence of significant changes in body composition (i.e. fat mass) are not related to changes in ceramides.


Assuntos
Envelhecimento/metabolismo , Ceramidas/metabolismo , Resistência à Insulina , Músculo Esquelético/metabolismo , Descanso , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/fisiologia , Exercício Físico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/fisiologia , Recuperação de Função Fisiológica
11.
J Nutr ; 147(9): 1616-1623, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28615380

RESUMO

Background: Amino acids, especially leucine, are particularly effective in promoting protein synthesis. Leucine is known to increase the rate of protein synthesis in skeletal muscle through the mechanistic target of rapamycin complex 1-dependent, as well as -independent, signaling pathways. However, the overall translation program is poorly defined, and it is unknown how the activation of these pathways differentially controls the translation of specific mRNAs.Objective: Ribosome profiling and RNA sequencing were used to precisely define the translational program activated by an acute oral dose of leucine.Methods: Adult male C57BL/6 mice were deprived of food overnight before the delivery of an acute dose of l-leucine (9.4 mg) (n = 6) or vehicle (n = 5) and tissues collected 30 min later. Ribosome footprints and total RNA were isolated and subjected to deep sequencing. Changes in gene-specific mRNA abundance and ribosome occupancy were determined between the leucine-treated and control groups by aligning sequence reads to Reference Sequence database mRNAs and applying statistical features of the Bioconductor package edgeR.Results: Our data revealed mRNA features that confer translational control of skeletal muscle mRNAs in response to an acute dose of leucine. The subset of skeletal muscle mRNAs that are activated consists largely of terminal oligopyrimidine mRNAs (false discovery rate: <0.05), whereas those with reduced translation had 5' untranslated regions with increased length. Only the small nuclear RNAs, which are required for ribosome biogenesis, were significantly altered in RNA abundance. The inferred functional translational program activated by dietary leucine includes increased protein synthesis capacity and energy metabolism, upregulation of sarcomere-binding proteins, modulation of circadian rhythm, and suppression of select immune components.Conclusions: These results clarify the translation program acutely stimulated by leucine in mouse skeletal muscle and establish new methodologies for use in future studies of skeletal muscle disease or aging and further examination of downstream effects of leucine on gene expression.


Assuntos
Expressão Gênica/efeitos dos fármacos , Leucina/farmacologia , Proteínas Musculares/metabolismo , Músculo Esquelético/efeitos dos fármacos , Biossíntese de Proteínas/genética , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , Ribossomos/metabolismo , Animais , Ritmo Circadiano/genética , Dieta , Metabolismo Energético/genética , Imunidade/genética , Masculino , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , RNA Mensageiro/metabolismo , Sarcômeros
12.
Eur J Appl Physiol ; 117(5): 853-866, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28280974

RESUMO

PURPOSE: Acute bouts of resistance exercise and subsequent training alters protein turnover in skeletal muscle. The mechanisms responsible for the changes in basal post-absorptive protein turnover and its impact on muscle hypertrophy following resistance exercise training are unknown. Our goal was to determine whether post-absorptive muscle protein turnover following 12 weeks of resistance exercise training (RET) plays a role in muscle hypertrophy. In addition, we were interested in determining potential molecular mechanisms responsible for altering post-training muscle protein turnover. METHODS: Healthy young men (n = 31) participated in supervised whole body progressive RET at 60-80% 1 repetition maximum (1-RM), 3 days/week for 3 months. Pre- and post-training vastus lateralis muscle biopsies and blood samples taken during an infusion of 13C6 and 15N phenylalanine and were used to assess skeletal muscle protein turnover in the post-absorptive state. Lean body mass (LBM), muscle strength (determined by dynamometry), vastus lateralis muscle thickness (MT), myofiber type-specific cross-sectional area (CSA), and mRNA were assessed pre- and post-RET. RESULTS: RET increased strength (12-40%), LBM (~5%), MT (~15%) and myofiber CSA (~20%) (p < 0.05). Muscle protein synthesis (MPS) increased 24% while muscle protein breakdown (MPB) decreased 21%, respectively. These changes in protein turnover resulted in an improved net muscle protein balance in the basal state following RET. Further, the change in basal MPS is positively associated (r = 0.555, p = 0.003) with the change in muscle thickness. CONCLUSION: Post-absorptive muscle protein turnover is associated with muscle hypertrophy during resistance exercise training.


Assuntos
Proteínas Musculares/metabolismo , Músculo Quadríceps/metabolismo , Treinamento Resistido , Absorciometria de Fóton , Humanos , Masculino , Força Muscular , Músculo Quadríceps/diagnóstico por imagem , Músculo Quadríceps/fisiologia , Adulto Jovem
13.
J Physiol ; 594(18): 5223-36, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27350317

RESUMO

KEY POINTS: Severe burns result in profound skeletal muscle atrophy that hampers recovery. The activity of skeletal muscle stem cells, satellite cells, acutely following a severe burn is unknown and may contribute to the recovery of lean muscle. Severe burn injury induces skeletal muscle regeneration and myonuclear apoptosis. Satellite cells undergo concurrent apoptosis and activation acutely following a burn, with a net reduction in satellite cell content compared to healthy controls. The activation and apoptosis of satellite cells probably impacts the recovery of lean tissue following a severe burn, contributing to prolonged frailty in burn survivors. ABSTRACT: Severe burns result in profound skeletal muscle atrophy; persistent muscle loss and weakness are major complications that hamper recovery from burn injury. Many factors contribute to the erosion of muscle mass following burn trauma and we propose that an impaired muscle satellite cell response is key in the aetiology of burn-induced cachexia. Muscle biopsies from the m. vastus lateralis were obtained from 12 male pediatric burn patients (>30% total body surface area burn) and 12 young, healthy male subjects. Satellite cell content, activation and apoptosis were determined via immunohistochemistry, as were muscle fibre regeneration and myonuclear apoptosis. Embryonic myosin heavy chain expression and central nucleation, indices of skeletal muscle regeneration, were elevated in burn patients (P < 0.05). Myonuclear apoptosis, quantified by TUNEL positive myonuclei and cleaved caspase-3 positive myonuclei, was also elevated in burn patients (P < 0.05). Satellite cell content was reduced in burn patients, with approximately 20% of satellite cells positive for TUNEL staining, indicating DNA damage associated with apoptosis (P < 0.05). Additionally, a significant percentage of satellite cells in burn patients expressed Ki67, a marker for cellular proliferation (P < 0.05). Satellite cell activation was also observed in burn patients with increased expression of MyoD compared to healthy controls (P < 0.05). Robust skeletal muscle atrophy occurs after burn injury, even in muscles located distally to the site of injury. The activation and apoptosis of satellite cells probably impacts the recovery of lean tissue following a severe burn, contributing to prolonged frailty in burn survivors.


Assuntos
Apoptose , Queimaduras/fisiopatologia , Músculo Esquelético/fisiologia , Células Satélites de Músculo Esquelético/fisiologia , Adolescente , Adulto , Queimaduras/metabolismo , Caspase 3/metabolismo , Criança , Humanos , Masculino , Músculo Esquelético/metabolismo , Proteína MyoD/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Fator de Transcrição PAX7/metabolismo , Regeneração , Células Satélites de Músculo Esquelético/metabolismo , Adulto Jovem
14.
Am J Physiol Endocrinol Metab ; 311(2): E436-48, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27382037

RESUMO

Burn trauma results in prolonged hypermetabolism and skeletal muscle wasting. How hypermetabolism contributes to muscle wasting in burn patients remains unknown. We hypothesized that oxidative stress, cytosolic protein degradation, and mitochondrial stress as a result of hypermetabolism contribute to muscle cachexia postburn. Patients (n = 14) with burns covering >30% of their total body surface area were studied. Controls (n = 13) were young healthy adults. We found that burn patients were profoundly hypermetabolic at both the skeletal muscle and systemic levels, indicating increased oxygen consumption by mitochondria. In skeletal muscle of burn patients, concurrent activation of mTORC1 signaling and elevation in the fractional synthetic rate paralleled increased levels of proteasomes and elevated fractional breakdown rate. Burn patients had greater levels of oxidative stress markers as well as higher expression of mtUPR-related genes and proteins, suggesting that burns increased mitochondrial stress and protein damage. Indeed, upregulation of cytoprotective genes suggests hypermetabolism-induced oxidative stress postburn. In parallel to mtUPR activation postburn, mitochondrial-specific proteases (LONP1 and CLPP) and mitochondrial translocases (TIM23, TIM17B, and TOM40) were upregulated, suggesting increased mitochondrial protein degradation and transport of preprotein, respectively. Our data demonstrate that proteolysis occurs in both the cytosolic and mitochondrial compartments of skeletal muscle in severely burned patients. Increased mitochondrial protein turnover may be associated with increased protein damage due to hypermetabolism-induced oxidative stress and activation of mtUPR. Our results suggest a novel role for the mitochondria in burn-induced cachexia.


Assuntos
Queimaduras/metabolismo , Caquexia/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Estresse Oxidativo , Consumo de Oxigênio , RNA Mensageiro/metabolismo , Proteases Dependentes de ATP/genética , Proteases Dependentes de ATP/metabolismo , Adolescente , Adulto , Western Blotting , Superfície Corporal , Queimaduras/complicações , Queimaduras/genética , Caquexia/etiologia , Caquexia/genética , Estudos de Casos e Controles , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Feminino , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Metabolismo , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Proteínas Musculares/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Reação em Cadeia da Polimerase em Tempo Real , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Regulação para Cima , Adulto Jovem
15.
J Nutr ; 146(2): 155-83, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26764320

RESUMO

The goal of this critical review is to comprehensively assess the evidence for the molecular, physiologic, and phenotypic skeletal muscle responses to resistance exercise (RE) combined with the nutritional intervention of protein and/or amino acid (AA) ingestion in young adults. We gathered the literature regarding the translational response in human skeletal muscle to acute exposure to RE and protein/AA supplements and the literature describing the phenotypic skeletal muscle adaptation to RE and nutritional interventions. Supplementation of protein/AAs with RE exhibited clear protein dose-dependent effects on translational regulation (protein synthesis) through mammalian target of rapamycin complex 1 (mTORC1) signaling, which was most apparent through increases in p70 ribosomal protein S6 kinase 1 (S6K1) phosphorylation, compared with postexercise recovery in the fasted or carbohydrate-fed state. These acute findings were critically tested via long-term exposure to RE training (RET) and protein/AA supplementation, and it was determined that a diminishing protein/AA supplement effect occurs over a prolonged exposure stimulus after exercise training. Furthermore, we found that protein/AA supplements, combined with RET, produced a positive, albeit minor, effect on the promotion of lean mass growth (when assessed in >20 participants/treatment); a negligible effect on muscle mass; and a negligible to no additional effect on strength. A potential concern we discovered was that the majority of the exercise training studies were underpowered in their ability to discern effects of protein/AA supplementation. Regardless, even when using optimal methodology and large sample sizes, it is clear that the effect size for protein/AA supplementation is low and likely limited to a subset of individuals because the individual variability is high. With regard to nutritional intakes, total protein intake per day, rather than protein timing or quality, appears to be more of a factor on this effect during long-term exercise interventions. There were no differences in strength or mass/muscle mass on RET outcomes between protein types when a leucine threshold (>2 g/dose) was reached. Future research with larger sample sizes and more homogeneity in design is necessary to understand the underlying adaptations and to better evaluate the individual variability in the muscle-adaptive response to protein/AA supplementation during RET.


Assuntos
Aminoácidos/farmacologia , Proteínas Alimentares/farmacologia , Suplementos Nutricionais , Proteínas Musculares/biossíntese , Músculo Esquelético/efeitos dos fármacos , Biossíntese de Proteínas , Treinamento Resistido , Aminoácidos/metabolismo , Proteínas Alimentares/metabolismo , Humanos , Músculo Esquelético/metabolismo
16.
J Nutr ; 146(12): 2468-2475, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27798330

RESUMO

BACKGROUND: Previous work demonstrated that a soy-dairy protein blend (PB) prolongs hyperaminoacidemia and muscle protein synthesis in young adults after resistance exercise. OBJECTIVE: We investigated the effect of PB in older adults. We hypothesized that PB would prolong hyperaminoacidemia, enhancing mechanistic target of rapamycin complex 1 (mTORC1) signaling and muscle protein anabolism compared with a whey protein isolate (WPI). METHODS: This double-blind, randomized controlled trial studied men 55-75 y of age. Subjects consumed 30 g protein from WPI or PB (25% soy, 25% whey, and 50% casein) 1 h after leg extension exercise (8 sets of 10 repetitions at 70% one-repetition maximum). Blood and muscle amino acid concentrations and basal and postexercise muscle protein turnover were measured by using stable isotopic methods. Muscle mTORC1 signaling was assessed by immunoblotting. RESULTS: Both groups increased amino acid concentrations (P < 0.05) and mTORC1 signaling after protein ingestion (P < 0.05). Postexercise fractional synthesis rate (FSR; P ≥ 0.05), fractional breakdown rate (FBR; P ≥ 0.05), and net balance (P = 0.08) did not differ between groups. WPI increased FSR by 67% (mean ± SEM: rest: 0.05% ± 0.01%; postexercise: 0.09% ± 0.01%; P < 0.05), decreased FBR by 46% (rest: 0.17% ± 0.01%; postexercise: 0.09% ± 0.03%; P < 0.05), and made net balance less negative (P < 0.05). PB ingestion did not increase FSR (rest: 0.07% ± 0.03%; postexercise: 0.09% ± 0.01%; P ≥ 0.05), tended to decrease FBR by 42% (rest: 0.25% ± 0.08%; postexercise: 0.15% ± 0.08%; P = 0.08), and made net balance less negative (P < 0.05). Within-group percentage of change differences were not different between groups for FSR, FBR, or net balance (P ≥ 0.05). CONCLUSIONS: WPI and PB ingestion after exercise in older men induced similar responses in hyperaminoacidemia, mTORC1 signaling, muscle protein synthesis, and breakdown. These data add new evidence for the use of whey or soy-dairy PBs as targeted nutritional interventions to counteract sarcopenia. This trial was registered at clinicaltrials.gov as NCT01847261.


Assuntos
Complexos Multiproteicos/metabolismo , Músculo Esquelético/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Soja/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Proteínas do Soro do Leite/farmacologia , Idoso , Envelhecimento , Bebidas/análise , Método Duplo-Cego , Exercício Físico , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Pessoa de Meia-Idade , Complexos Multiproteicos/genética , Músculo Esquelético/efeitos dos fármacos , Proteínas de Soja/química , Serina-Treonina Quinases TOR/genética
17.
J Nutr ; 146(9): 1660-9, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27466602

RESUMO

BACKGROUND: To our knowledge the efficacy of soy-dairy protein blend (PB) supplementation with resistance exercise training (RET) has not been evaluated in a longitudinal study. OBJECTIVE: Our aim was to determine the effect of PB supplementation during RET on muscle adaptation. METHODS: In this double-blind randomized clinical trial, healthy young men [18-30 y; BMI (in kg/m(2)): 25 ± 0.5] participated in supervised whole-body RET at 60-80% 1-repetition maximum (1-RM) for 3 d/wk for 12 wk with random assignment to daily receive 22 g PB (n = 23), whey protein (WP) isolate (n = 22), or an isocaloric maltodextrin (carbohydrate) placebo [(MDP) n = 23]. Serum testosterone, muscle strength, thigh muscle thickness (MT), myofiber cross-sectional area (mCSA), and lean body mass (LBM) were assessed before and after 6 and 12 wk of RET. RESULTS: All treatments increased LBM (P < 0.001). ANCOVA did not identify an overall treatment effect at 12 wk (P = 0.11). There tended to be a greater change in LBM from baseline to 12 wk in the PB group than in the MDP group (0.92 kg; 95% CI: -0.12, 1.95 kg; P = 0.09); however, changes in the WP and MDP groups did not differ. Pooling data from combined PB and WP treatments showed a trend for greater change in LBM from baseline to 12 wk compared with MDP treatment (0.69 kg; 95% CI: -0.08, 1.46 kg; P = 0.08). Muscle strength, mCSA, and MT increased (P < 0.05) similarly for all treatments and were not different (P > 0.10) between treatments. Testosterone was not altered. CONCLUSIONS: PB supplementation during 3 mo of RET tended to slightly enhance gains in whole-body and arm LBM, but not leg muscle mass, compared with RET without protein supplementation. Although protein supplementation minimally enhanced gains in LBM of healthy young men, there was no enhancement of gains in strength. This trial was registered at clinicaltrials.gov as NCT01749189.


Assuntos
Suplementos Nutricionais , Exercício Físico , Músculo Esquelético/efeitos dos fármacos , Treinamento Resistido , Proteínas do Soro do Leite/administração & dosagem , Adaptação Fisiológica , Adolescente , Adulto , Composição Corporal , Índice de Massa Corporal , Peso Corporal , Método Duplo-Cego , Humanos , Masculino , Força Muscular/efeitos dos fármacos , Testosterona/sangue , Adulto Jovem
18.
Am J Physiol Endocrinol Metab ; 309(3): E224-32, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26037248

RESUMO

Mitochondrial health is critical to physiological function, particularly in tissues with high ATP turnover, such as striated muscle. It has been postulated that derangements in skeletal muscle mitochondrial function contribute to impaired physical function in older adults. Here, we determined mitochondrial respiratory capacity and coupling control in skeletal muscle biopsies obtained from young and older adults. Twenty-four young (28 ± 7 yr) and thirty-one older (62 ± 8 yr) adults were studied. Mitochondrial respiration was determined in permeabilized myofibers from the vastus lateralis after the addition of substrates oligomycin and CCCP. Thereafter, mitochondrial coupling control was calculated. Maximal coupled respiration (respiration linked to ATP production) was lower in muscle from older vs. young subjects (P < 0.01), as was maximal uncoupled respiration (P = 0.06). Coupling control in response to the ATP synthase inhibitor oligomycin was lower in older adults (P < 0.05), as was the mitochondria flux control ratio, coupled respiration normalized to maximal uncoupled respiration (P < 0.05). Calculation of respiratory function revealed lower respiration linked to ATP production (P < 0.001) and greater reserve respiration (P < 0.01); i.e., respiratory capacity not used for phosphorylation in muscle from older adults. We conclude that skeletal muscle mitochondrial respiratory capacity and coupling control decline with age. Lower respiratory capacity and coupling efficiency result in a reduced capacity for ATP production in skeletal muscle of older adults.


Assuntos
Envelhecimento , Regulação para Baixo , Complexo II de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Fosforilação Oxidativa , Adulto , Idoso , Idoso de 80 Anos ou mais , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Estudos de Coortes , Regulação para Baixo/efeitos dos fármacos , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo II de Transporte de Elétrons/antagonistas & inibidores , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias Musculares/efeitos dos fármacos , Mitocôndrias Musculares/enzimologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Miofibrilas/efeitos dos fármacos , Miofibrilas/enzimologia , Miofibrilas/metabolismo , Oligomicinas/farmacologia , Fosforilação Oxidativa/efeitos dos fármacos , Ionóforos de Próton/farmacologia , Músculo Quadríceps/efeitos dos fármacos , Músculo Quadríceps/crescimento & desenvolvimento , Músculo Quadríceps/metabolismo , Desacopladores/farmacologia , Adulto Jovem
20.
Am J Physiol Endocrinol Metab ; 306(10): E1198-204, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24691032

RESUMO

Restriction of blood flow to a contracting muscle during low-intensity resistance exercise (BFR exercise) stimulates mTORC1 signaling and protein synthesis in human muscle within 3 h postexercise. However, there is a lack of mechanistic data to provide a direct link between mTORC1 activation and protein synthesis in human skeletal muscle following BFR exercise. Therefore, the primary purpose of this study was to determine whether mTORC1 signaling is necessary for stimulating muscle protein synthesis after BFR exercise. A secondary aim was to describe the 24-h time course response in muscle protein synthesis and breakdown following BFR exercise. Sixteen healthy young men were randomized to one of two groups. Both the control (CON) and rapamycin (RAP) groups completed BFR exercise; however, RAP was administered 16 mg of the mTOR inhibitor rapamycin 1 h prior to BFR exercise. BFR exercise consisted of four sets of leg extension exercise at 20% of 1 RM. Muscle biopsies were collected from the vastus lateralis before exercise and at 3, 6, and 24 h after BFR exercise. Mixed-muscle protein fractional synthetic rate increased by 42% at 3 h postexercise and 69% at 24 h postexercise in CON, whereas this increase was inhibited in the RAP group. Phosphorylation of mTOR (Ser(2448)) and S6K1 (Thr(389)) was also increased in CON but inhibited in RAP. Mixed-muscle protein breakdown was not significantly different across time or groups. We conclude that activation of mTORC1 signaling and protein synthesis in human muscle following BFR exercise is inhibited in the presence of rapamycin.


Assuntos
Exercício Físico/fisiologia , Complexos Multiproteicos/metabolismo , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Fluxo Sanguíneo Regional/fisiologia , Sirolimo/administração & dosagem , Serina-Treonina Quinases TOR/metabolismo , Adolescente , Adulto , Constrição , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Contração Muscular/fisiologia , Músculo Esquelético/metabolismo , Transdução de Sinais/efeitos dos fármacos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa