Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Methods ; 203: 465-477, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34314827

RESUMO

By providing a three-dimensional in vitro culture system with key features of the substantia nigra region in the brain, 3D neuronal organoids derived from human induced pluripotent stem cells (iPSCs) provide living neuronal tissue resembling the midbrain region of the brain. However, a major limitation of conventional brain organoid culture is that it is often labor-intensive, requiring highly specialized personnel for moderate throughput. Additionally, the methods published for long-term cultures require time-consuming maintenance to generate brain organoids in large numbers. With the increasing need for human midbrain organoids (hMOs) to better understand and model Parkinson's disease (PD) in a dish, there is a need to implement new workflows and methods to both generate and maintain hMOs, while minimizing batch to batch variation. In this study, we developed a method with microfabricated disks to scale up the generation of hMOs. This opens up the possibility to generate larger numbers of hMOs, in a manner that minimizes the amount of labor required, while decreasing variability and maintaining the viability of these hMOs over time. Taken together, producing hMOs in this manner opens up the potential for these to be used to further PD studies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Organoides , Encéfalo , Humanos , Mesencéfalo , Neurônios
2.
Int J Mol Sci ; 24(19)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37834379

RESUMO

Fragile X syndrome (FXS) is caused by a repression of the FMR1 gene that codes the Fragile X mental retardation protein (FMRP), an RNA binding protein involved in processes that are crucial for proper brain development. To better understand the consequences of the absence of FMRP, we analyzed gene expression profiles and activities of cortical neural progenitor cells (NPCs) and neurons obtained from FXS patients' induced pluripotent stem cells (IPSCs) and IPSC-derived cells from FMR1 knock-out engineered using CRISPR-CAS9 technology. Multielectrode array recordings revealed in FMR1 KO and FXS patient cells, decreased mean firing rates; activities blocked by tetrodotoxin application. Increased expression of presynaptic mRNA and transcription factors involved in the forebrain specification and decreased levels of mRNA coding AMPA and NMDA subunits were observed using RNA sequencing on FMR1 KO neurons and validated using quantitative PCR in both models. Intriguingly, 40% of the differentially expressed genes were commonly deregulated between NPCs and differentiating neurons with significant enrichments in FMRP targets and autism-related genes found amongst downregulated genes. Our findings suggest that the absence of FMRP affects transcriptional profiles since the NPC stage, and leads to impaired activity and neuronal differentiation over time, which illustrates the critical role of FMRP protein in neuronal development.


Assuntos
Síndrome do Cromossomo X Frágil , Células-Tronco Pluripotentes Induzidas , Humanos , Animais , Camundongos , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Neurogênese/genética , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , RNA Mensageiro/genética , Camundongos Knockout
3.
Hum Reprod ; 31(5): 938-46, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26975326

RESUMO

STUDY QUESTION: Can we make the comet assay (single-cell gel electrophoresis) for human sperm a more accurate and informative high throughput assay? SUMMARY ANSWER: We developed a standardized automated high throughput comet (HT-COMET) assay for human sperm that improves its accuracy and efficiency, and could be of prognostic value to patients in the fertility clinic. WHAT IS KNOWN ALREADY: The comet assay involves the collection of data on sperm DNA damage at the level of the single cell, allowing the use of samples from severe oligozoospermic patients. However, this makes comet scoring a low throughput procedure that renders large cohort analyses tedious. Furthermore, the comet assay comes with an inherent vulnerability to variability. Our objective is to develop an automated high throughput comet assay for human sperm that will increase both its accuracy and efficiency. STUDY DESIGN, SIZE, DURATION: The study comprised two distinct components: a HT-COMET technical optimization section based on control versus DNAse treatment analyses ( ITALIC! n = 3-5), and a cross-sectional study on 123 men presenting to a reproductive center with sperm concentrations categorized as severe oligozoospermia, oligozoospermia or normozoospermia. PARTICIPANTS/MATERIALS, SETTING, METHODS: Sperm chromatin quality was measured using the comet assay: on classic 2-well slides for software comparison; on 96-well slides for HT-COMET optimization; after exposure to various concentrations of a damage-inducing agent, DNAse, using HT-COMET; on 123 subjects with different sperm concentrations using HT-COMET. Data from the 123 subjects were correlated to classic semen quality parameters and plotted as single-cell data in individual DNA damage profiles. MAIN RESULTS AND THE ROLE OF CHANCE: We have developed a standard automated HT-COMET procedure for human sperm. It includes automated scoring of comets by a fully integrated high content screening setup that compares well with the most commonly used semi-manual analysis software. Using this method, a cross-sectional study on 123 men showed no significant correlation between sperm concentration and sperm DNA damage, confirming the existence of hidden chromatin damage in men with apparently normal semen characteristics, and a significant correlation between percentage DNA in the tail and percentage of progressively motile spermatozoa. Finally, the use of DNA damage profiles helped to distinguish subjects between and within sperm concentration categories, and allowed a determination of the proportion of highly damaged cells. LIMITATIONS, REASONS FOR CAUTION: The main limitations of the HT-COMET are the high, yet indispensable, investment in an automated liquid handling system and heating block to ensure accuracy, and the availability of an automated plate reading microscope and analysis software. WIDER IMPLICATIONS OF THE FINDINGS: This standardized HT-COMET assay offers many advantages, including higher accuracy and evenness due to automation of sensitive steps, a 14.4-fold increase in sample analysis capacity, and an imaging and scoring time of 1 min/well. Overall, HT-COMET offers a decrease in total experimental time of more than 90%. Hence, this assay constitutes a more efficient option to assess sperm chromatin quality, paves the way to using this assay to screen large cohorts, and holds prognostic value for infertile patients. STUDY FUNDING/COMPETING INTERESTS: Funded by the CIHR Institute of Human Development, Child and Youth Health (IHDCYH; RHF 100625). O.A. is a fellow supported by the Fonds de la Recherche du Québec - Santé (FRQS) and the CIHR Training Program in Reproduction, Early Development, and the Impact on Health (REDIH). B.R. is a James McGill Professor. The authors declare no conflicts of interest.


Assuntos
Ensaio Cometa/métodos , Análise do Sêmen/métodos , Software , Espermatozoides/citologia , Cromatina , Dano ao DNA , Humanos , Processamento de Imagem Assistida por Computador , Infertilidade Masculina/genética , Masculino , Valor Preditivo dos Testes , Espermatozoides/ultraestrutura
4.
Cells ; 12(4)2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36831212

RESUMO

A multitude of in vitro models based on induced pluripotent stem cell (iPSC)-derived motor neurons (MNs) have been developed to investigate the underlying causes of selective MN degeneration in motor neuron diseases (MNDs). For instance, spheroids are simple 3D models that have the potential to be generated in large numbers that can be used across different assays. In this study, we generated MN spheroids and developed a workflow to analyze them. To start, the morphological profiling of the spheroids was achieved by developing a pipeline to obtain measurements of their size and shape. Next, we confirmed the expression of different MN markers at the transcript and protein levels by qPCR and immunocytochemistry of tissue-cleared samples, respectively. Finally, we assessed the capacity of the MN spheroids to display functional activity in the form of action potentials and bursts using a microelectrode array approach. Although most of the cells displayed an MN identity, we also characterized the presence of other cell types, namely interneurons and oligodendrocytes, which share the same neural progenitor pool with MNs. In summary, we successfully developed an MN 3D model, and we optimized a workflow that can be applied to perform its morphological, gene expression, protein, and functional profiling over time.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes Induzidas/metabolismo , Diferenciação Celular/genética , Fluxo de Trabalho , Neurônios Motores/metabolismo
5.
bioRxiv ; 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37398479

RESUMO

Antibodies are critical reagents to detect and characterize proteins. It is commonly understood that many commercial antibodies do not recognize their intended targets, but information on the scope of the problem remains largely anecdotal, and as such, feasibility of the goal of at least one potent and specific antibody targeting each protein in a proteome cannot be assessed. Focusing on antibodies for human proteins, we have scaled a standardized characterization approach using parental and knockout cell lines (Laflamme et al., 2019) to assess the performance of 614 commercial antibodies for 65 neuroscience-related proteins. Side-by-side comparisons of all antibodies against each target, obtained from multiple commercial partners, demonstrates that: i) more than 50% of all antibodies failed in one or more tests, ii) yet, ~50-75% of the protein set was covered by at least one high-performing antibody, depending on application, suggesting that coverage of human proteins by commercial antibodies is significant; and iii) recombinant antibodies performed better than monoclonal or polyclonal antibodies. The hundreds of underperforming antibodies identified in this study were found to have been used in a large number of published articles, which should raise alarm. Encouragingly, more than half of the underperforming commercial antibodies were reassessed by the manufacturers, and many had alterations to their recommended usage or were removed from the market. This first such study helps demonstrate the scale of the antibody specificity problem but also suggests an efficient strategy toward achieving coverage of the human proteome; mine the existing commercial antibody repertoire, and use the data to focus new renewable antibody generation efforts.

6.
Elife ; 122023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37995198

RESUMO

Antibodies are critical reagents to detect and characterize proteins. It is commonly understood that many commercial antibodies do not recognize their intended targets, but information on the scope of the problem remains largely anecdotal, and as such, feasibility of the goal of at least one potent and specific antibody targeting each protein in a proteome cannot be assessed. Focusing on antibodies for human proteins, we have scaled a standardized characterization approach using parental and knockout cell lines (Laflamme et al., 2019) to assess the performance of 614 commercial antibodies for 65 neuroscience-related proteins. Side-by-side comparisons of all antibodies against each target, obtained from multiple commercial partners, have demonstrated that: (i) more than 50% of all antibodies failed in one or more applications, (ii) yet, ~50-75% of the protein set was covered by at least one high-performing antibody, depending on application, suggesting that coverage of human proteins by commercial antibodies is significant; and (iii) recombinant antibodies performed better than monoclonal or polyclonal antibodies. The hundreds of underperforming antibodies identified in this study were found to have been used in a large number of published articles, which should raise alarm. Encouragingly, more than half of the underperforming commercial antibodies were reassessed by the manufacturers, and many had alterations to their recommended usage or were removed from the market. This first study helps demonstrate the scale of the antibody specificity problem but also suggests an efficient strategy toward achieving coverage of the human proteome; mine the existing commercial antibody repertoire, and use the data to focus new renewable antibody generation efforts.


Commercially produced antibodies are essential research tools. Investigators at universities and pharmaceutical companies use them to study human proteins, which carry out all the functions of the cells. Scientists usually buy antibodies from commercial manufacturers who produce more than 6 million antibody products altogether. Yet many commercial antibodies do not work as advertised. They do not recognize their intended protein target or may flag untargeted proteins. Both can skew research results and make it challenging to reproduce scientific studies, which is vital to scientific integrity. Using ineffective commercial antibodies likely wastes $1 billion in research funding each year. Large-scale validation of commercial antibodies by an independent third party could reduce the waste and misinformation associated with using ineffective commercial antibodies. Previous research testing an antibody validation pipeline showed that a commercial antibody widely used in studies to detect a protein involved in amyotrophic lateral sclerosis did not work. Meanwhile, the best-performing commercial antibodies were not used in research. Testing commercial antibodies and making the resulting data available would help scientists identify the best study tools and improve research reliability. Ayoubi et al. collaborated with antibody manufacturers and organizations that produce genetic knock-out cell lines to develop a system validating the effectiveness of commercial antibodies. In the experiments, Ayoubi et al. tested 614 commercial antibodies intended to detect 65 proteins involved in neurologic diseases. An effective antibody was available for about two thirds of the 65 proteins. Yet, hundreds of the antibodies, including many used widely in studies, were ineffective. Manufacturers removed some underperforming antibodies from the market or altered their recommended uses based on these data. Ayoubi et al. shared the resulting data on Zenodo, a publicly available preprint database. The experiments suggest that 20-30% of protein studies use ineffective antibodies, indicating a substantial need for independent assessment of commercial antibodies. Ayoubi et al. demonstrated their side-by-side antibody comparison methods were an effective and efficient way of validating commercial antibodies. Using this approach to test commercial antibodies against all human proteins would cost about $50 million. But it could save much of the $1 billion wasted each year on research involving ineffective antibodies. Independent validation of commercial antibodies could also reduce wasted efforts by scientists using ineffective antibodies and improve the reliability of research results. It would also enable faster, more reliable research that may help scientists understand diseases and develop new therapies to improve patient's lives.


Assuntos
Anticorpos , Proteoma , Humanos , Anticorpos/química
7.
Cell Rep ; 40(3): 111102, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858558

RESUMO

The nervous system spread of alpha-synuclein fibrils is thought to cause Parkinson's disease (PD) and other synucleinopathies; however, the mechanisms underlying internalization and cellular spread are enigmatic. Here, we use confocal and superresolution microscopy, subcellular fractionation, and electron microscopy (EM) of immunogold-labeled α-synuclein preformed fibrils (PFFs) to demonstrate that this form of the protein undergoes rapid internalization and is targeted directly to lysosomes in as little as 2 min. Uptake of PFFs is disrupted by macropinocytic inhibitors and circumvents classical endosomal pathways. Immunogold-labeled PFFs are seen at the highly curved inward edge of membrane ruffles, in newly formed macropinosomes, in multivesicular bodies and in lysosomes. While most fibrils remain in lysosomes, a portion is transferred to neighboring naive cells along with markers of exosomes. These data indicate that PFFs use a unique internalization mechanism as a component of cell-to-cell propagation.


Assuntos
Doença de Parkinson , Sinucleinopatias , Endossomos/metabolismo , Humanos , Lisossomos/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo
8.
J Cell Biol ; 170(4): 675-86, 2005 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16103232

RESUMO

In Xenopus laevis, patterning of the trunk mesoderm into the dorsal notochord and lateral somites depends on differential regulation of Wnt-beta-catenin signaling. To study the cellular requirements for the physical separation of these tissues, we manipulated beta-catenin activity in individual cells that were scattered within the trunk mesoderm. We found that high activity led to efficient cell sorting from the notochord to the somites, whereas reduced activity led to sorting in the opposite direction. Analysis of individual cells overexpressing beta-catenin revealed that these cells were unable to establish stable contacts with notochord cells but could freely cross the boundary to integrate within the somitic tissue. Interference with cadherin-mediated adhesion disrupted tissue architecture, but it did not affect sorting and boundary formation. Based on these results, we propose that the boundary itself is the result of cell-autonomous changes in contact behavior that do not rely on differences in absolute levels of adhesion.


Assuntos
Movimento Celular , Notocorda/citologia , Somitos/citologia , Xenopus laevis/embriologia , Xenopus laevis/metabolismo , beta Catenina/metabolismo , Animais , Caderinas/metabolismo , Adesão Celular , Linhagem da Célula , Forma Celular , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Gástrula/citologia , Gástrula/metabolismo , Expressão Gênica , Mosaicismo , Notocorda/metabolismo , Plasmídeos , Ligação Proteica , Deleção de Sequência , Transdução de Sinais , Somitos/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/genética
9.
Proteome Sci ; 6: 21, 2008 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-18652672

RESUMO

In recent years proteomic techniques have started to become very useful tools in a variety of model systems of developmental biology. Applications cover many different aspects of development, including the characterization of changes in the proteome during early embryonic stages. During early animal development the embryo becomes patterned through the temporally and spatially controlled activation of distinct sets of genes. Patterning information is then translated, from gastrulation onwards, into regional specific morphogenetic cell and tissue movements that give the embryo its characteristic shape. On the molecular level, patterning is the outcome of intercellular communication via signaling molecules and the local activation or repression of transcription factors. Genetic approaches have been used very successfully to elucidate the processes behind these events. Morphogenetic movements, on the other hand, have to be orchestrated through regional changes in the mechanical properties of cells. The molecular mechanisms that govern these changes have remained much more elusive, at least in part due to the fact that they are more under translational/posttranslational control than patterning events. However, recent studies indicate that proteomic approaches can provide the means to finally unravel the mechanisms that link patterning to the generation of embryonic form. To intensify research in this direction will require close collaboration between proteome scientists and developmental researchers. It is with this aim in mind that we first give an outline of the classical questions of patterning and morphogenesis. We then summarize the proteomic approaches that have been applied in developmental model systems and describe the pioneering studies that have been done to study morphogenesis. Finally we discuss current and future strategies that will allow characterizing the changes in the embryonic proteome and ultimately lead to a deeper understanding of the cellular mechanisms that govern the generation of embryonic form.

10.
J Cell Biol ; 191(3): 645-59, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20974811

RESUMO

Epithelial cell adhesion molecule (EpCAM) is best known as a tumor-associated protein highly expressed in carcinomas. The function of this cell surface protein during embryonic development and its potential role in cancer are still poorly understood. We identified EpCAM in a gain-of-function screen for inducers of abnormal tissue mixing during gastrulation. Elevated EpCAM levels in either the ectoderm or the mesoderm confer "invasive" properties to cells in both populations. We found that this phenotype represents an "overstimulation" of an essential activity of EpCAM in controlling cell movements during embryonic development. Surprisingly, this property is independent of the putative adhesive function of EpCAM, and rather relies on a novel signaling function that operates through down-regulation of PKC activity. We show that inhibition of novel PKCs accounts entirely for the invasive phenotype induced by abnormally high levels of EpCAM as well as for its normal function in regulating cell rearrangement during early development.


Assuntos
Antígenos de Neoplasias/metabolismo , Moléculas de Adesão Celular/metabolismo , Movimento Celular , Células Epiteliais/metabolismo , Espaço Intracelular/metabolismo , Morfogênese , Neoplasias/metabolismo , Transdução de Sinais , Animais , Molécula de Adesão da Célula Epitelial , Humanos , Fenótipo , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Xenopus/embriologia
11.
Matrix Biol ; 28(7): 432-41, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19638308

RESUMO

Tropoelastin is the monomeric form of elastin, a major polymeric protein of the extracellular elastic matrix of vertebrate tissues with properties of extensibility and elastic recoil. Mammalian and avian species contain a single gene for tropoelastin. A tropoelastin gene has also previously been identified in amphibians. In contrast, two tropoelastin genes with different tissue expression patterns have been described in teleosts. While general characteristics of tropoelastins, such as alternating arrangements of hydrophobic and crosslinking domains, are conserved across a wide phylogenetic range, sequences of these domains are highly variable, particularly when amphibian and teleost tropoelastins are included. For this reason exon-to-exon correspondence is not clear, and overall alignment of tropoelastin sequences across all species is not possible. An exception to this is the C-terminal exon, whose coding sequence has been very well-conserved across all species described to date. In mammalians this C-terminal domain has been shown to be important for interactions with cells and other matrix-associated proteins involved in matrix assembly. Here we identify and characterize a second tropoelastin gene in the frog with several unusual characteristics, the most striking of which is truncation of the C-terminal domain, deleting normally conserved sequence motifs. We demonstrate that, in spite of the absence of these motifs, both frog tropoelastin genes are expressed and incorporated into the elastic matrix, although with differential tissue localizations.


Assuntos
Tropoelastina/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus/metabolismo , Sequência de Aminoácidos , Animais , Elastina/genética , Elastina/metabolismo , Evolução Molecular , Éxons , Humanos , Pulmão/metabolismo , Pulmão/ultraestrutura , Dados de Sequência Molecular , Peptídeos/genética , Peptídeos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Pele/metabolismo , Pele/ultraestrutura , Tropoelastina/genética , Proteínas de Xenopus/genética
12.
Dev Dyn ; 237(9): 2328-41, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18729204

RESUMO

The cytoplasmic tail of cadherins is thought to regulate the strength and dynamics of cell-cell adhesion. Part of its regulatory activity has been attributed to a membrane-proximal region, the juxtamembrane domain (JMD), and its interaction with members of the p120 catenin subfamily. We show that titration of xARVCF, a member of this family, to the plasma membrane disrupts adhesion in the early embryo. Adhesion can be restored by coexpression of constitutively active Rac, suggesting that intracellular signaling is the primary cause in the loss of adhesion phenotype. Our observations suggest that the recruitment of p120 type catenins to the plasma membrane by the cadherin cytoplasmic tail may create protein complexes, which actively modulate the adhesion "status" of embryonic cells.


Assuntos
Proteínas do Domínio Armadillo/fisiologia , Caderinas/fisiologia , Moléculas de Adesão Celular/fisiologia , Membrana Celular/metabolismo , Fosfoproteínas/fisiologia , Proteínas de Xenopus/fisiologia , Animais , Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/metabolismo , Caderinas/genética , Caderinas/metabolismo , Cateninas , Adesão Celular/genética , Adesão Celular/fisiologia , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Citoplasma/metabolismo , Feminino , Imunofluorescência , Imunoprecipitação , Modelos Biológicos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Xenopus , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , beta Catenina/metabolismo , delta Catenina
13.
Dev Biol ; 257(2): 329-42, 2003 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-12729562

RESUMO

The germ cell nuclear factor (GCNF, NR6A1) is a nuclear orphan receptor first described in the mouse testis and subsequently identified as an essential transcription factor in vertebrate embryogenesis. Here, we analyze the phenotype of Xenopus embryos after depletion of embryonic GCNF (xEmGCNF) protein using a specific morpholino antisense oligonucleotide. Morphological defects after xEmGCNF knockdown became obvious from neurulation onward. Among the abnormalities observed, defective formation of the neural tube and a short and curved main body axis were the most remarkable traits. Histological analysis, lineage tracing of injected blastomeres, and Keller sandwich explants revealed that xEmGCNF function is required for different patterns of cell intercalation during neurulation and consequently for the sequence of morphogenetic movements leading to formation of the neural tube. Further characterization of the phenotype at the molecular level showed an abnormal distribution of the extracellular matrix protein fibronectin and a reduction in the expression level of the integrin subunits alpha5 and alpha6, the limiting components of the laminin and fibronectin receptors, respectively. We propose integrin-mediated cell-matrix interaction as a process that requires xEmGCNF function and provides, in concert with cadherins-mediated cell-cell interactions, a molecular basis for morphogenetic cell movements during neurulation.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Sistema Nervoso/embriologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Animais , Blastômeros , Proteínas de Ligação a DNA/genética , Embrião não Mamífero/efeitos dos fármacos , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Cabeça/anormalidades , Cabeça/embriologia , Integrina alfa5/genética , Integrina alfa6/genética , Morfogênese/efeitos dos fármacos , Sistema Nervoso/patologia , Defeitos do Tubo Neural/induzido quimicamente , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/patologia , Membro 1 do Grupo A da Subfamília 6 de Receptores Nucleares , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Fenótipo , Receptores Citoplasmáticos e Nucleares/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transplantes , Proteínas de Xenopus/genética , Xenopus laevis/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa