Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 18(12): 1288-1298, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29144501

RESUMO

Progress at the beginning of the 21st century transformed the perception of complement from that of a blood-based antimicrobial system to that of a global regulator of immunity and tissue homeostasis. More recent years have witnessed remarkable advances in structure-function insights and understanding of the mechanisms and locations of complement activation, which have added new layers of complexity to the biology of complement. This complexity is readily reflected by the multifaceted and contextual involvement of complement-driven networks in a wide range of inflammatory and neurodegenerative disorders and cancer. This Review provides an updated view of new and previously unanticipated functions of complement and how these affect immunity and disease pathogenesis.


Assuntos
Ativação do Complemento/imunologia , Proteínas do Sistema Complemento/imunologia , Imunidade Inata/imunologia , Linfócitos T CD4-Positivos/imunologia , Proteínas do Sistema Complemento/metabolismo , Homeostase/imunologia , Humanos , Inflamação/imunologia , Neoplasias/imunologia
2.
Clin Immunol ; 214: 108391, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32229292

RESUMO

Age-related macular degeneration (AMD) is a leading cause of irreversible vision loss among the elderly population. Genetic studies in susceptible individuals have linked this ocular disease to deregulated complement activity that culminates in increased C3 turnover, retinal inflammation and photoreceptor loss. Therapeutic targeting of C3 has therefore emerged as a promising strategy for broadly intercepting the detrimental proinflammatory consequences of complement activation in the retinal tissue. In this regard, a PEGylated second-generation derivative of the compstatin family of C3-targeted inhibitors is currently in late-stage clinical development as a treatment option for geographic atrophy, an advanced form of AMD which lacks approved therapy. While efficacy has been strongly suggested in phase 2 clinical trials, crucial aspects still remain to be defined with regard to the ocular bioavailability, tissue distribution and residence, and dosing frequency of such inhibitors in AMD patients. Here we report the intraocular distribution and pharmacokinetic profile of the fourth-generation compstatin analog, Cp40-KKK in cynomolgus monkeys following a single intravitreal injection. Using a sensitive surface plasmon resonance (SPR)-based competition assay and ELISA, we have quantified both the amount of inhibitor and the concentration of C3 retained in the vitreous of Cp40-KKK-injected animals. Cp40-KKK displays prolonged intraocular residence, being detected at C3-saturating levels for over 3 months after a single intravitreal injection. Moreover, we have probed the distribution of Cp40-KKK within the ocular tissue by means of immunohistochemistry and highly specific anti-Cp40-KKK antibodies. Both C3 and Cp40-KKK were detected in the retinal tissue of inhibitor-injected animals, with prominent co-localization in the choroid one-month post intravitreal injection. These results attest to the high retinal tissue penetrance and target-driven distribution of Cp40-KKK. Given its subnanomolar binding affinity and prolonged ocular residence, Cp40-KKK constitutes a promising drug candidate for ocular pathologies underpinned by deregulated C3 activation.


Assuntos
Complemento C3/antagonistas & inibidores , Olho/química , Idoso , Animais , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Humanos , Injeções Intravítreas , Macaca fascicularis , Retina/química , Fatores de Tempo , Distribuição Tecidual
3.
Trends Immunol ; 38(6): 383-394, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28416449

RESUMO

Complement dysregulation underlies several inflammatory disorders, and terminal complement inhibition has thus far afforded significant clinical gains. Nonetheless, emerging pathologies, fueled by complement imbalance and therapy-skewing genetic variance, underscore the need for more comprehensive, disease-tailored interventions. Modulation at the level of C3, a multifaceted orchestrator of the complement cascade, opens up prospects for broader therapeutic efficacy by targeting multiple pathogenic pathways modulated by C3-triggered proinflammatory crosstalk. Notably, C3 intervention is emerging as a viable therapeutic strategy for renal disorders with predominantly complement-driven etiology, such as C3 glomerulopathy (C3G). Using C3G as a paradigm, we argue that concerns about the feasibility of long-term C3 intervention need to be placed into perspective and weighed against actual therapeutic outcomes in prospective clinical trials.


Assuntos
Complemento C3/metabolismo , Glomerulonefrite Membranosa/tratamento farmacológico , Doenças do Complexo Imune/tratamento farmacológico , Inflamação/tratamento farmacológico , Animais , Anticorpos Bloqueadores/uso terapêutico , Ensaios Clínicos como Assunto , Ativação do Complemento , Complemento C3/imunologia , Medicina Baseada em Evidências , Glomerulonefrite Membranosa/imunologia , Humanos , Doenças do Complexo Imune/imunologia , Inflamação/imunologia , Modelos Imunológicos , Terapia de Alvo Molecular
4.
Immunol Rev ; 274(1): 33-58, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27782325

RESUMO

As a preformed defense system, complement faces a delicate challenge in providing an immediate, forceful response to pathogens even at first encounter, while sparing host cells in the process. For this purpose, it engages a tightly regulated network of plasma proteins, cell surface receptors, and regulators. Complement component C3 plays a particularly versatile role in this process by keeping the cascade alert, acting as a point of convergence of activation pathways, fueling the amplification of the complement response, exerting direct effector functions, and helping to coordinate downstream immune responses. In recent years, it has become evident that nature engages the power of C3 not only to clear pathogens but also for a variety of homeostatic processes ranging from tissue regeneration and synapse pruning to clearing debris and controlling tumor cell progression. At the same time, its central position in immune surveillance makes C3 a target for microbial immune evasion and, if improperly engaged, a trigger point for various clinical conditions. In our review, we look at the versatile roles and evolutionary journey of C3, discuss new insights into the molecular basis for C3 function, provide examples of disease involvement, and summarize the emerging potential of C3 as a therapeutic target.


Assuntos
Ativação do Complemento , Complemento C3/imunologia , Doenças do Sistema Imunitário/imunologia , Imunidade Inata , Imunoterapia/tendências , Animais , Evolução Biológica , Humanos
5.
Circulation ; 138(16): 1720-1735, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-29802205

RESUMO

BACKGROUND: Platelets have distinct roles in the vascular system in that they are the major mediator of thrombosis, critical for restoration of tissue integrity, and players in vascular inflammatory conditions. In close spatiotemporal proximity, the complement system acts as the first line of defense against invading microorganisms and is a key mediator of inflammation. Whereas the fluid phase cross-talk between the complement and coagulation systems is well appreciated, the understanding of the pathophysiological implications of such interactions is still scant. METHODS: We analyzed coexpression of the anaphylatoxin receptor C3aR with activated glycoprotein IIb/IIIa on platelets of 501 patients with coronary artery disease using flow cytometry; detected C3aR expression in human or murine specimen by polymerase chain reaction, immunofluorescence, Western blotting, or flow cytometry; and examined the importance of platelet C3aR by various in vitro platelet function tests, in vivo bleeding time, and intravital microscopy. The pathophysiological relevance of C3aR was scrutinized with the use of disease models of myocardial infarction and stroke. To approach underlying molecular mechanisms, we identified the platelet small GTPase Rap1b using nanoscale liquid chromatography coupled to tandem mass spectrometry. RESULTS: We found a strong positive correlation of platelet complement C3aR expression with activated glycoprotein IIb/IIIa in patients with coronary artery disease and coexpression of C3aR with glycoprotein IIb/IIIa in thrombi obtained from patients with myocardial infarction. Our results demonstrate that the C3a/C3aR axis on platelets regulates distinct steps of thrombus formation such as platelet adhesion, spreading, and Ca2+ influx. Using C3aR-/- mice or C3-/- mice with reinjection of C3a, we uncovered that the complement activation fragment C3a regulates bleeding time after tail injury and thrombosis. Notably, C3aR-/- mice were less prone to experimental stroke and myocardial infarction. Furthermore, reconstitution of C3aR-/- mice with C3aR+/+ platelets and platelet depletion experiments demonstrated that the observed effects on thrombosis, myocardial infarction, and stroke were specifically caused by platelet C3aR. Mechanistically, C3aR-mediated signaling regulates the activation of Rap1b and thereby bleeding arrest after injury and in vivo thrombus formation. CONCLUSIONS: Overall, our findings uncover a novel function of the anaphylatoxin C3a for platelet function and thrombus formation, highlighting a detrimental role of imbalanced complement activation in cardiovascular diseases.


Assuntos
Coagulação Sanguínea , Plaquetas/metabolismo , Imunidade Inata , Infarto do Miocárdio/sangue , Receptores de Complemento/sangue , Acidente Vascular Cerebral/sangue , Trombose/sangue , Animais , Plaquetas/imunologia , Sinalização do Cálcio , Ativação do Complemento , Complemento C3/genética , Complemento C3/imunologia , Complemento C3/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/imunologia , Ativação Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Complexo Glicoproteico GPIb-IX de Plaquetas/genética , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Receptores de Complemento/deficiência , Receptores de Complemento/genética , Receptores de Complemento/imunologia , Acidente Vascular Cerebral/imunologia , Trombose/imunologia
6.
Clin Immunol ; 198: 102-105, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30472267

RESUMO

Owing to an increasing shortage of donor organs, the majority of patients with end-stage kidney disease remains reliant on extracorporeal hemodialysis (HD) in order to counter the lifelong complications of a failing kidney. While HD remains a life-saving option for these patients, mounting evidence suggests that it also fuels a vicious cycle of thromboinflammation that can increase the risk of cardiovascular disease. During HD, blood-borne innate immune systems become inappropriately activated on the biomaterial surface, instigating proinflammatory reactions that can alter endothelial and vascular homeostasis. Complement activation, early during the HD process, has been shown to fuel a multitude of detrimental thromboinflammatory reactions that collectively contribute to patient morbidity. Here we discuss emerging aspects of complement's involvement in HD-induced inflammation and put forth the concept that targeted intervention at the level of C3 might constitute a promising therapeutic approach in HD patients.


Assuntos
Complemento C3/antagonistas & inibidores , Inativadores do Complemento/uso terapêutico , Inflamação/tratamento farmacológico , Diálise Renal/efeitos adversos , Humanos
7.
J Proteome Res ; 17(9): 3153-3175, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30111112

RESUMO

Periodontitis is a prevalent chronic inflammatory disease associated with dysbiosis. Although complement inhibition has been successfully used to treat periodontitis in animal models, studies globally analyzing inflamed tissue proteins to glean insight into possible mechanisms of action are missing. Using quantitative shotgun proteomics, we aimed to investigate differences in composition of inflammatory gingival tissue exudate ("gingival crevicular fluid"; GCF), before and after local administration of an inhibitor of the central complement component, C3, in nonhuman primates. The C3 inhibitor, Cp40 (also known as AMY-101) was administered locally in the maxillary gingival tissue of cynomolgus monkeys with established periodontitis, either once a week (1×-treatment; n = 5 animals) or three times per week (3×-treatment; n = 10 animals), for 6 weeks followed by another 6 weeks of observation in the absence of treatment. 45 GCF samples were processed for FASP digestion and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Data were processed using the ProgenesisQI software. The statistical significance of differences between the groups was determined by RM-ANOVA, and a protein expression change was considered as a true regulation at >2-fold and p < 0.05. The human orthologues were subjected to Gene Ontology analyses using PANTHER. Data are available via ProteomeXchange with identifier PXD009502. 573 proteins with >2 peptides were longitudinally quantified. Both 3× and 1× administration of Cp40 resulted in significant down-regulation of dozens of proteins during the 6-week course of treatment as compared to baseline. Following drug withdrawal at 6 weeks, more than 50% of the down-regulated proteins showed increased levels at week 12. The top scored pathway was "complement activation, alternative pathway", and several proteins involved in this pathway were down-regulated at 6 weeks. We mapped the proteomic fingerprint changes in local tissue exudate of cynomolgus monkey periodontitis in response to C3 inhibition and identified the alternative pathway of complement activation and leukocyte degranulation as main targets, which are thus likely to play significant roles in periodontal disease pathogenesis. Label-free quantitative proteomics strategies utilizing GCF are powerful tools for the identification of treatment targets and providing insights into disease mechanisms.


Assuntos
Anti-Inflamatórios/farmacologia , Complemento C3/antagonistas & inibidores , Via Alternativa do Complemento/efeitos dos fármacos , Líquido do Sulco Gengival/química , Peptídeos Cíclicos/farmacologia , Periodontite/tratamento farmacológico , Animais , Degranulação Celular/efeitos dos fármacos , Degranulação Celular/imunologia , Cromatografia Líquida , Complemento C3/genética , Via Alternativa do Complemento/genética , Modelos Animais de Doenças , Esquema de Medicação , Regulação da Expressão Gênica , Ontologia Genética , Gengiva/efeitos dos fármacos , Gengiva/imunologia , Gengiva/patologia , Líquido do Sulco Gengival/efeitos dos fármacos , Líquido do Sulco Gengival/imunologia , Leucócitos/efeitos dos fármacos , Leucócitos/imunologia , Leucócitos/patologia , Macaca fascicularis , Anotação de Sequência Molecular , Periodontite/genética , Periodontite/imunologia , Periodontite/patologia , Proteoma/classificação , Proteoma/genética , Proteoma/imunologia , Espectrometria de Massas em Tandem
8.
Dev Biol ; 428(1): 88-100, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28576690

RESUMO

Complement components have been implicated in a wide variety of functions including neurogenesis, proliferation, cell migration, differentiation, cancer, and more recently early development and regeneration. Following our initial observations indicating that C3a/C3aR signaling induces chick retina regeneration, we analyzed its role in chick eye morphogenesis. During eye development, the optic vesicle (OV) invaginates to generate a bilayer optic cup (OC) that gives rise to the retinal pigmented epithelium (RPE) and neural retina. We show by immunofluorescence staining that C3 and the receptor for C3a (the cleaved and active form of C3), C3aR, are present in chick embryos during eye morphogenesis in the OV and OC. Interestingly, C3aR is mainly localized in the nuclear compartment at the OC stage. Loss of function studies at the OV stage using morpholinos or a blocking antibody targeting the C3aR (anti-C3aR Ab), causes eye defects such as microphthalmia and defects in the ventral portion of the eye that result in coloboma. Such defects were not observed when C3aR was disrupted at the OC stage. Histological analysis demonstrated that microphthalmic eyes were unable to generate a normal optic stalk or a closed OC. The dorsal/ventral patterning defects were accompanied by an expansion of the ventral markers Pax2, cVax and retinoic acid synthesizing enzyme raldh-3 (aldh1a3) domains, an absence of the dorsal expression of Tbx5 and raldh-1 (aldh1a1) and a re-specification of the ventral RPE to neuroepithelium. In addition, the eyes showed overall decreased expression of Gli1 and a change in distribution of nuclear ß-catenin, suggesting that Shh and Wnt pathways have been affected. Finally, we observed prominent cell death along with a decrease in proliferating cells, indicating that both processes contribute to the microphthalmic phenotype. Together our results show that C3aR is necessary for the proper morphogenesis of the OC. This is the first report implicating C3aR in eye development, revealing an unsuspected hitherto regulator for proper chick eye morphogenesis.


Assuntos
Padronização Corporal/fisiologia , Complemento C3a/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Receptores de Complemento/metabolismo , Epitélio Pigmentado da Retina/embriologia , Aldeído Desidrogenase/metabolismo , Animais , Apoptose/fisiologia , Proliferação de Células/fisiologia , Embrião de Galinha , Proteínas Hedgehog/metabolismo , Microftalmia/embriologia , Morfogênese/fisiologia , Fator de Transcrição PAX2/metabolismo , Receptores de Complemento/genética , Retinal Desidrogenase/metabolismo , Proteínas com Domínio T/metabolismo , Via de Sinalização Wnt/fisiologia , Proteína GLI1 em Dedos de Zinco/biossíntese , beta Catenina/metabolismo
9.
Clin Immunol ; 197: 96-106, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30217791

RESUMO

The central component of the complement cascade, C3, is involved in various biological functions, including opsonization of foreign bodies, clearance of waste material, activation of immune cells, and triggering of pathways controlling development. Given its broad role in immune responses, particularly in phagocytosis and the clearance of microbes, a deficiency in complement C3 in humans is often associated with multiple bacterial infections. Interestingly, an increased susceptibility to infections appears to occur mainly in the first two years of life and then wanes throughout adulthood. In view of the well-established connection between C3 deficiency and infections, therapeutic inhibition of complement at the level of C3 is often considered with caution or disregarded. We therefore set out to investigate the immune and biochemical profile of non-human primates under prolonged treatment with the C3 inhibitor compstatin (Cp40 analog). Cynomolgus monkeys were dosed subcutaneously with Cp40, resulting in systemic inhibition of C3, for 1 week, 2 weeks, or 3 months. Plasma concentrations of both C3 and Cp40 were measured periodically and complete saturation of plasma C3 was confirmed. No differences in hematological, biochemical, or immunological parameters were identified in the blood or tissues of animals treated with Cp40 when compared to those injected with vehicle alone. Further, skin wounds showed no signs of infection in those treated with Cp40. In fact, Cp40 treatment was associated with a trend toward accelerated wound healing when compared with the control group. In addition, a biodistribution study in a rhesus monkey indicated that the distribution of Cp40 in the body is associated with the presence of C3, concentrating in organs that accumulate blood and produce C3. Overall, our data suggest that systemic C3 inhibition in healthy adult non-human primates is not associated with a weakened immune system or susceptibility to infections.


Assuntos
Complemento C3/antagonistas & inibidores , Inativadores do Complemento/toxicidade , Peptídeos Cíclicos/toxicidade , Cicatrização/imunologia , Infecção dos Ferimentos/epidemiologia , Animais , Complemento C3/imunologia , Complemento C3/metabolismo , Inativadores do Complemento/farmacocinética , Macaca fascicularis , Macaca mulatta , Peptídeos Cíclicos/farmacocinética , Fatores de Tempo , Distribuição Tecidual , Ferimentos e Lesões/imunologia
10.
J Immunol ; 197(6): 2500-8, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27511733

RESUMO

Liver regeneration is a well-orchestrated process in the liver that allows mature hepatocytes to reenter the cell cycle to proliferate and replace lost or damaged cells. This process is often impaired in fatty or diseased livers, leading to cirrhosis and other deleterious phenotypes. Prior research has established the role of the complement system and its effector proteins in the progression of liver regeneration; however, a detailed mechanistic understanding of the involvement of complement in regeneration is yet to be established. In this study, we have examined the role of the complement system during the priming phase of liver regeneration through a systems level analysis using a combination of transcriptomic and metabolomic measurements. More specifically, we have performed partial hepatectomy on mice with genetic deficiency in C3, the major component of the complement cascade, and collected their livers at various time points. Based on our analysis, we show that the C3 cascade activates c-fos and promotes the TNF-α signaling pathway, which then activates acute-phase genes such as serum amyloid proteins and orosomucoids. The complement activation also regulates the efflux and the metabolism of cholesterol, an important metabolite for cell cycle and proliferation. Based on our systems level analysis, we provide an integrated model for the complement-induced priming phase of liver regeneration.


Assuntos
Ativação do Complemento , Complemento C3/imunologia , Complemento C3/metabolismo , Hepatócitos/fisiologia , Regeneração Hepática/genética , Regeneração Hepática/imunologia , Animais , Proliferação de Células , Colesterol/imunologia , Colesterol/metabolismo , Complemento C3/deficiência , Complemento C3/genética , Perfilação da Expressão Gênica , Hepatectomia , Hepatócitos/imunologia , Metabolômica/métodos , Camundongos , Camundongos Endogâmicos C57BL , Orosomucoide/genética , Proteína Amiloide A Sérica/genética , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
11.
Am J Physiol Renal Physiol ; 312(3): F516-F532, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28052876

RESUMO

We have examined the pathogenic role of increased complement expression and activation during kidney fibrosis. Here, we show that PDGFRß-positive pericytes isolated from mice subjected to obstructive or folic acid injury secrete C1q. This was associated with increased production of proinflammatory cytokines, extracellular matrix components, collagens, and increased Wnt3a-mediated activation of Wnt/ß-catenin signaling, which are hallmarks of myofibroblast activation. Real-time PCR, immunoblots, immunohistochemistry, and flow cytometry analysis performed in whole kidney tissue confirmed increased expression of C1q, C1r, and C1s as well as complement activation, which is measured as increased synthesis of C3 fragments predominantly in the interstitial compartment. Flow studies localized increased C1q expression to PDGFRß-positive pericytes as well as to CD45-positive cells. Although deletion of C1qA did not prevent kidney fibrosis, global deletion of C3 reduced macrophage infiltration, reduced synthesis of C3 fragments, and reduced fibrosis. Clodronate mediated depletion of CD11bF4/80 high macrophages in UUO mice also reduced complement gene expression and reduced fibrosis. Our studies demonstrate local synthesis of complement by both PDGFRß-positive pericytes and CD45-positive cells in kidney fibrosis. Inhibition of complement activation represents a novel therapeutic target to ameliorate fibrosis and progression of chronic kidney disease.


Assuntos
Ativação do Complemento , Complemento C1q/metabolismo , Complemento C3/metabolismo , Túbulos Renais/metabolismo , Macrófagos/metabolismo , Pericitos/metabolismo , Insuficiência Renal Crônica/metabolismo , Animais , Comunicação Celular , Complemento C1q/deficiência , Complemento C1q/genética , Complemento C1q/imunologia , Complemento C3/deficiência , Complemento C3/genética , Complemento C3/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Proteínas da Matriz Extracelular/metabolismo , Fibrose , Ácido Fólico , Genótipo , Mediadores da Inflamação/metabolismo , Túbulos Renais/imunologia , Túbulos Renais/patologia , Antígenos Comuns de Leucócito/metabolismo , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pericitos/imunologia , Pericitos/patologia , Fenótipo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/imunologia , Insuficiência Renal Crônica/patologia , Fatores de Tempo , Obstrução Ureteral/complicações , Via de Sinalização Wnt , Proteína Wnt3A/metabolismo
12.
J Immunol ; 194(7): 3305-16, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25712219

RESUMO

The plasma protein C3 is a central element in the activation and effector functions of the complement system. A hereditary dysfunction of C3 that prevents complement activation via the alternative pathway (AP) was described previously in a Swedish family, but its genetic cause and molecular consequences have remained elusive. In this study, we provide these missing links by pinpointing the dysfunction to a point mutation in the ß-chain of C3 (c.1180T > C; p.Met(373)Thr). In the patient's plasma, AP activity was completely abolished and could only be reconstituted with the addition of normal C3. The M373T mutation was localized to the macroglobulin domain 4 of C3, which contains a binding site for the complement inhibitor compstatin and is considered critical for the interaction of C3 with the AP C3 convertase. Structural analyses suggested that the mutation disturbs the integrity of macroglobulin domain 4 and induces conformational changes that propagate into adjacent regions. Indeed, C3 M373T showed an altered binding pattern for compstatin and surface-bound C3b, and the presence of Thr(373) in either the C3 substrate or convertase-affiliated C3b impaired C3 activation and opsonization. In contrast to known gain-of-function mutations in C3, patients affected by this loss-of-function mutation did not develop familial disease, but rather showed diverse and mostly episodic symptoms. Our study therefore reveals the molecular mechanism of a relevant loss-of-function mutation in C3 and provides insight into the function of the C3 convertase, the differential involvement of C3 activity in clinical conditions, and some potential implications of therapeutic complement inhibition.


Assuntos
Complemento C3/genética , Complemento C3/imunologia , Via Alternativa do Complemento , Mutação , Adulto , Substituição de Aminoácidos , Ativação do Complemento/genética , Ativação do Complemento/imunologia , Complemento C3/química , Convertases de Complemento C3-C5/metabolismo , Análise Mutacional de DNA , Éxons , Feminino , Humanos , Modelos Moleculares , Mutação de Sentido Incorreto , Linhagem , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas
13.
Clin Immunol ; 171: 32-35, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27546448

RESUMO

During malarial anemia, 20 uninfected red blood cells (RBCs) are destroyed for every RBC infected by Plasmodium falciparum (Pf). Increasing evidence indicates an important role for complement in destruction of uninfected RBCs. Products of RBC lysis induced by Pf, including the digestive vacuole and hematin, activate complement and promote C3 fragment deposition on uninfected RBCs. C3-opsonized cells are then subject to extravascular destruction mediated by fixed tissue macrophages which express receptors for C3 fragments. The Compstatin family of cyclic peptides blocks complement activation at the C3 cleavage step, and is under investigation for treatment of complement-mediated diseases. We demonstrate, that under a variety of stringent conditions, second-generation Compstatin analogue Cp40 completely blocks hematin-mediated deposition of C3 fragments on naïve RBCs. Our findings indicate that prophylactic provision of Compstatin for malaria-infected individuals at increased risk for anemia may provide a safe and inexpensive treatment to prevent or substantially reduce malarial anemia.


Assuntos
Complemento C3b/metabolismo , Eritrócitos/efeitos dos fármacos , Hemina/metabolismo , Peptídeos Cíclicos/farmacologia , Anemia/tratamento farmacológico , Eritrócitos/metabolismo , Humanos , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum
14.
Blood ; 123(13): 2094-101, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24497537

RESUMO

Paroxysmal nocturnal hemoglobinuria (PNH) is characterized by complement-mediated intravascular hemolysis due to the lack of CD55 and CD59 on affected erythrocytes. The anti-C5 antibody eculizumab has proven clinically effective, but uncontrolled C3 activation due to CD55 absence may result in opsonization of erythrocytes, possibly leading to clinically meaningful extravascular hemolysis. We investigated the effect of the peptidic C3 inhibitor, compstatin Cp40, and its long-acting form (polyethylene glycol [PEG]-Cp40) on hemolysis and opsonization of PNH erythrocytes in an established in vitro system. Both compounds demonstrated dose-dependent inhibition of hemolysis with IC50 ∼4 µM and full inhibition at 6 µM. Protective levels of either Cp40 or PEG-Cp40 also efficiently prevented deposition of C3 fragments on PNH erythrocytes. We further explored the potential of both inhibitors for systemic administration and performed pharmacokinetic evaluation in nonhuman primates. A single intravenous injection of PEG-Cp40 resulted in a prolonged elimination half-life of >5 days but may potentially affect the plasma levels of C3. Despite faster elimination kinetics, saturating inhibitor concentration could be reached with unmodified Cp40 through repetitive subcutaneous administration. In conclusion, peptide inhibitors of C3 activation effectively prevent hemolysis and C3 opsonization of PNH erythrocytes, and are excellent, and potentially cost-effective, candidates for further clinical investigation.


Assuntos
Ativação do Complemento/efeitos dos fármacos , Complemento C3/antagonistas & inibidores , Hemoglobinúria Paroxística/tratamento farmacológico , Peptídeos Cíclicos/uso terapêutico , Animais , Desenho de Fármacos , Eritrócitos/efeitos dos fármacos , Eritrócitos/fisiologia , Meia-Vida , Hemoglobinúria Paroxística/metabolismo , Hemólise/efeitos dos fármacos , Humanos , Macaca fascicularis , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/uso terapêutico , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Polietilenoglicóis/farmacologia , Polietilenoglicóis/uso terapêutico
15.
Clin Immunol ; 161(2): 225-40, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26341313

RESUMO

Around 350 million people worldwide suffer from rare diseases. These may have a genetic, infectious, or autoimmune basis, and several include an inflammatory component. Launching of effective treatments can be very challenging when there is a low disease prevalence and limited scientific insights into the disease mechanisms. As a key trigger of inflammatory processes, complement has been associated with a variety of diseases and has become an attractive therapeutic target for conditions involving inflammation. In view of the clinical experience acquired with drugs licensed for the treatment of rare diseases such as hereditary angioedema and paroxysmal nocturnal hemoglobinuria, growing evidence supports the safety and efficacy of complement therapeutics in restoring immune balance and preventing aggravation of clinical outcomes. This review provides an overview of the candidates currently in the pharmaceutical pipeline with potential to treat orphan diseases and discusses the molecular mechanisms triggered by complement involved with the disease pathogenesis.


Assuntos
Angioedemas Hereditários/tratamento farmacológico , Anticorpos Monoclonais Humanizados/uso terapêutico , Ativação do Complemento/efeitos dos fármacos , Hemoglobinúria Paroxística/tratamento farmacológico , Doenças Raras/tratamento farmacológico , Angioedemas Hereditários/imunologia , Anticorpos Monoclonais Humanizados/imunologia , Ativação do Complemento/imunologia , Proteínas do Sistema Complemento/imunologia , Hemoglobinúria Paroxística/imunologia , Humanos , Modelos Imunológicos , Doenças Raras/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Resultado do Tratamento
17.
Bioinformatics ; 29(14): 1832-3, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23661693

RESUMO

SUMMARY: The human complement system is increasingly perceived as an intricate protein network of effectors, inhibitors and regulators that drives critical processes in health and disease and extensively communicates with associated physiological pathways ranging from immunity and inflammation to homeostasis and development. A steady stream of experimental data reveals new fascinating connections at a rapid pace; although opening unique opportunities for research discoveries, the comprehensiveness and large diversity of experimental methods, nomenclatures and publication sources renders it highly challenging to keep up with the essential findings. With the Complement Map Database (CMAP), we have created a novel and easily accessible research tool to assist the complement community and scientists from related disciplines in exploring the complement network and discovering new connections. AVAILABILITY: http://www.complement.us/cmap. CONTACT: lambris@upenn.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Proteínas do Sistema Complemento/metabolismo , Bases de Dados de Proteínas , Complemento C5a/metabolismo , Humanos , Proteínas
18.
J Immunol ; 189(11): 5442-8, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23089394

RESUMO

When excessively activated or deregulated, complement becomes a major link between infection and inflammatory pathology including periodontitis. This oral inflammatory disease is associated with a dysbiotic microbiota, leads to the destruction of bone and other tooth-supporting structures, and exerts an adverse impact on systemic health. We have previously shown that mice deficient either in complement C5a receptor (C5aR; CD88) or TLR2 are highly and similarly resistant to periodontitis, suggesting that a cross-talk between the two receptors may be involved in the disease process. In this paper, we show that C5aR and TLR2 indeed synergize for maximal inflammatory responses in the periodontal tissue and uncover a novel pharmacological target to abrogate periodontitis. Using two different mouse models of periodontitis, we show that local treatments with a C5aR antagonist inhibited periodontal inflammation through downregulation of TNF, IL-1ß, IL-6, and IL-17 and further protected against bone loss, regardless of the presence of TLR2. These findings not only reveal a crucial cooperation between C5aR and TLR2 in periodontal inflammation but also provide proof-of-concept for local targeting of C5aR as a powerful candidate for the treatment of human periodontitis.


Assuntos
Infecções por Bacteroidaceae/tratamento farmacológico , Lipopeptídeos/administração & dosagem , Peptídeos Cíclicos/administração & dosagem , Periodontite/tratamento farmacológico , Porphyromonas gingivalis/efeitos dos fármacos , Receptor da Anafilatoxina C5a/antagonistas & inibidores , Animais , Infecções por Bacteroidaceae/imunologia , Infecções por Bacteroidaceae/microbiologia , Regulação para Baixo/efeitos dos fármacos , Sinergismo Farmacológico , Gengiva/imunologia , Imunidade Inata/efeitos dos fármacos , Injeções , Interleucina-17/biossíntese , Interleucina-17/imunologia , Interleucina-1beta/biossíntese , Interleucina-1beta/imunologia , Interleucina-6/biossíntese , Interleucina-6/imunologia , Camundongos , Periodontite/imunologia , Periodontite/microbiologia , Porphyromonas gingivalis/imunologia , Receptor Cross-Talk/efeitos dos fármacos , Receptor Cross-Talk/imunologia , Receptor da Anafilatoxina C5a/metabolismo , Receptor 2 Toll-Like/agonistas , Receptor 2 Toll-Like/metabolismo
19.
J Immunol ; 189(10): 4797-805, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23041570

RESUMO

The complement anaphylatoxins C3a, C5a, and desarginated C5a (C5a(desArg)) play critical roles in the induction of inflammation and the modulation of innate and acquired immune responses after binding to their G protein-coupled receptors, C3a receptor and C5a receptor (C5aR). The role of C5a(desArg) in inducing cell activation has been often neglected, because the affinity of C5a(desArg) for C5aR has been reported to be much lower than that of C5a. We have used a novel label-free cellular assay to reassess the potential of C5a(desArg) to induce activation of transfected and primary immune cells. Our results indicate that physiological levels of C5a(desArg) induce significant levels of cell activation that are even higher than those achieved by stimulating cells with analogous concentrations of C5a. Such activation was strictly dependent on C5aR, because it was completely abrogated by PMX-53, a C5aR antagonist. Pharmacological inhibition of specific G proteins located downstream of C5aR indicated differential involvement of G(α) proteins upon C5aR engagement by C5a or C5a(desArg). Further, mass spectrometric characterization of plasma-derived C5a and C5a(desArg) provided important insight into the posttranslational modification pattern of these anaphylatoxins, which includes glycosylation at Asn(64) and partial cysteinylation at Cys(27). Although the context-specific physiological contribution of C5a(desArg) has to be further explored, our data suggest that C5a(desArg) acts as a key molecule in the triggering of local inflammation as well as the maintenance of blood surveillance and homeostatic status.


Assuntos
Bioensaio/métodos , Complemento C3/imunologia , Complemento C5a/imunologia , Receptores de Complemento/imunologia , Animais , Linhagem Celular Tumoral , Complemento C3/análise , Complemento C3/genética , Complemento C5a/análise , Complemento C5a/genética , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades alfa de Proteínas de Ligação ao GTP/imunologia , Humanos , Peptídeos Cíclicos/farmacologia , Ratos , Receptor da Anafilatoxina C5a , Receptores de Complemento/antagonistas & inibidores , Receptores de Complemento/genética
20.
Eur J Immunol ; 40(3): 710-21, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20017191

RESUMO

C5a is a proinflammatory mediator that has recently been shown to regulate adaptive immune responses. Here we demonstrate that C5a receptor (C5aR) signaling in DC affects the development of Treg and Th17 cells. Genetic ablation or pharmacological targeting of the C5aR in spleen-derived DC results in increased production of TGF-beta leading to de novo differentiation of Foxp3(+) Treg within 12 h after co-incubation with CD4(+) T cells from DO11.10/RAG2(-/-) mice. Stimulation of C5aR(-/-) DC with OVA and TLR2 ligand Pam(3)CSK(4) increased TGF-beta production and induced high levels of IL-6 and IL-23 but only minor amounts of IL-12 leading to differentiation of Th cells producing IL-17A and IL-21. Th17 differentiation was also found in vivo after adoptive transfer of CD4(+) Th cell into C5aR(-/-) mice immunized with OVA and Pam(3)CSK(4). The altered cytokine production of C5aR(-/-) DC was associated with low steady state MHC class II expression and an impaired ability to upregulate CD86 and CD40 in response to TLR2. Our data suggest critical roles for C5aR in Treg and Th17-cell differentiation through regulation of DC function.


Assuntos
Diferenciação Celular/imunologia , Células Dendríticas/imunologia , Receptor da Anafilatoxina C5a/imunologia , Transdução de Sinais/imunologia , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Reguladores/citologia , Animais , Separação Celular , Células Dendríticas/metabolismo , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Interleucina-17/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Receptor da Anafilatoxina C5a/deficiência , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa