Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 348
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 43(14): 2568-2578, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36868852

RESUMO

A growing number of social interactions are taking place virtually on videoconferencing platforms. Here, we explore potential effects of virtual interactions on observed behavior, subjective experience, and neural "single-brain" and "interbrain" activity via functional near-infrared spectroscopy neuroimaging. We scanned a total of 36 human dyads (72 participants, 36 males, 36 females) who engaged in three naturalistic tasks (i.e., problem-solving, creative-innovation, socio-emotional task) in either an in-person or virtual (Zoom) condition. We also coded cooperative behavior from audio recordings. We observed reduced conversational turn-taking behavior during the virtual condition. Given that conversational turn-taking was associated with other metrics of positive social interaction (e.g., subjective cooperation and task performance), this measure may be an indicator of prosocial interaction. In addition, we observed altered patterns of averaged and dynamic interbrain coherence in virtual interactions. Interbrain coherence patterns that were characteristic of the virtual condition were associated with reduced conversational turn-taking. These insights can inform the design and engineering of the next generation of videoconferencing technology.SIGNIFICANCE STATEMENT Videoconferencing has become an integral part of our lives. Whether this technology impacts behavior and neurobiology is not well understood. We explored potential effects of virtual interaction on social behavior, brain activity, and interbrain coupling. We found that virtual interactions were characterized by patterns of interbrain coupling that were negatively implicated in cooperation. Our findings are consistent with the perspective that videoconferencing technology adversely affects individuals and dyads during social interaction. As virtual interactions become even more necessary, improving the design of videoconferencing technology will be crucial for supporting effective communication.


Assuntos
Relações Interpessoais , Comportamento Social , Masculino , Feminino , Humanos , Encéfalo , Comportamento Cooperativo , Mapeamento Encefálico/métodos , Comunicação
2.
Cereb Cortex ; 33(11): 7211-7220, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-36848244

RESUMO

Expressing appreciation is essential for establishing interpersonal closeness, but virtual interactions are increasingly common and create social distance. Little is known about the neural and inter-brain correlates of expressing appreciation and the potential effects of virtual videoconferencing on this kind of interaction. Here, we assess inter-brain coherence with functional near-infrared spectroscopy while dyads expressed appreciation to one another. We scanned 36 dyads (72 participants) who interacted in either an in-person or virtual (Zoom®) condition. Participants reported on their subjective experience of interpersonal closeness. As predicted, expressing appreciation increased interpersonal closeness between dyad partners. Relative to 3 other cooperation tasks (i.e. problem-solving task, creative-innovation task, socio-emotional task), we observed increased inter-brain coherence in socio-cognitive areas of the cortex (anterior frontopolar area, inferior frontal gyrus, premotor cortex, middle temporal gyrus, supramarginal gyrus, and visual association cortex) during the appreciation task. Increased inter-brain coherence in socio-cognitive areas during the appreciation task was associated with increased interpersonal closeness. These findings support the perspective that expressing appreciation, both in-person and virtually, increases subjective and neural metrics of interpersonal closeness.


Assuntos
Encéfalo , Córtex Motor , Humanos , Encéfalo/diagnóstico por imagem , Relações Interpessoais , Comportamento Cooperativo , Espectroscopia de Luz Próxima ao Infravermelho , Mapeamento Encefálico/métodos
3.
Cereb Cortex ; 33(7): 3969-3984, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36066436

RESUMO

Assessment of brain function with functional near-infrared spectroscopy (fNIRS) is limited to the outer regions of the cortex. Previously, we demonstrated the feasibility of inferring activity in subcortical "deep brain" regions using cortical functional magnetic resonance imaging (fMRI) and fNIRS activity in healthy adults. Access to subcortical regions subserving emotion and arousal using affordable and portable fNIRS is likely to be transformative for clinical diagnostic and treatment planning. Here, we validate the feasibility of inferring activity in subcortical regions that are central to the pathophysiology of posttraumatic stress disorder (PTSD; i.e. amygdala and hippocampus) using cortical fMRI and simulated fNIRS activity in a sample of adolescents diagnosed with PTSD (N = 20, mean age = 15.3 ± 1.9 years) and age-matched healthy controls (N = 20, mean age = 14.5 ± 2.0 years) as they performed a facial expression task. We tested different prediction models, including linear regression, a multilayer perceptron neural network, and a k-nearest neighbors model. Inference of subcortical fMRI activity with cortical fMRI showed high prediction performance for the amygdala (r > 0.91) and hippocampus (r > 0.95) in both groups. Using fNIRS simulated data, relatively high prediction performance for deep brain regions was maintained in healthy controls (r > 0.79), as well as in youths with PTSD (r > 0.75). The linear regression and neural network models provided the best predictions.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Adulto , Adolescente , Humanos , Criança , Transtornos de Estresse Pós-Traumáticos/diagnóstico por imagem , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Encéfalo/diagnóstico por imagem , Emoções , Imageamento por Ressonância Magnética , Biomarcadores
4.
Environ Res ; 242: 117756, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38016496

RESUMO

BACKGROUND: Early life exposure to organophosphate (OP) pesticides has been linked with poorer neurodevelopment from infancy to adolescence. In our Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) birth cohort, we previously reported that residential proximity to OP use during pregnancy was associated with altered cortical activation using functional near infrared spectroscopy (fNIRS) in a small subset (n = 95) of participants at age 16 years. METHODS: We administered fNIRS to 291 CHAMACOS young adults at the 18-year visit. Using covariate-adjusted regression models, we estimated associations of prenatal and childhood urinary dialkylphosphates (DAPs), non-specific OP metabolites, with cortical activation in the frontal, temporal, and parietal regions of the brain during tasks of executive function and semantic language. RESULTS: There were some suggestive associations for prenatal DAPs with altered activation patterns in both the inferior frontal and inferior parietal lobes of the left hemisphere during a task of cognitive flexibility (ß per ten-fold increase in DAPs = 3.37; 95% CI: -0.02, 6.77 and ß = 3.43; 95% CI: 0.64, 6.22, respectively) and the inferior and superior frontal pole/dorsolateral prefrontal cortex of the right hemisphere during the letter retrieval working memory task (ß = -3.10; 95% CI: -6.43, 0.22 and ß = -3.67; 95% CI: -7.94, 0.59, respectively). We did not observe alterations in cortical activation with prenatal DAPs during a semantic language task or with childhood DAPs during any task. DISCUSSION: We observed associations of prenatal OP concentrations with mild alterations in cortical activation during tasks of executive function. Associations with childhood exposure were null. This is reasonably consistent with studies of prenatal OPs and neuropsychological measures of attention and executive function found in CHAMACOS and other birth cohorts.


Assuntos
Inseticidas , Praguicidas , Efeitos Tardios da Exposição Pré-Natal , Adolescente , Criança , Feminino , Humanos , Gravidez , Encéfalo/diagnóstico por imagem , Neuroimagem Funcional , Exposição Materna/efeitos adversos , Organofosfatos/toxicidade , Organofosfatos/urina , Compostos Organofosforados/toxicidade , Praguicidas/toxicidade , Praguicidas/urina , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente
5.
Artigo em Inglês | MEDLINE | ID: mdl-38904702

RESUMO

BACKGROUND: Klinefelter syndrome (KS), also referred to as XXY syndrome, is a significant but inadequately studied risk factor for neuropsychiatric disability. Whether alterations in functional brain connectivity or pubertal delays are associated with aberrant cognitive-behavioral outcomes in individuals with KS is largely unknown. In this observational study, we investigated KS-related alterations in the resting-state brain network, testosterone level, and cognitive-behavioral impairment in adolescents with Klinefelter syndrome. METHODS: We recruited 46 boys with KS, ages 8 to 17 years, and 51 age-matched typically developing (TD) boys. All participants underwent resting-state functional magnetic resonance imaging scans, pubertal, and cognitive-behavioral assessments. Resting-state functional connectivity and regional brain activity of the participants were assessed. RESULTS: We found widespread alterations in global functional connectivity among the inferior frontal gyrus, temporal-parietal area, and hippocampus in boys with KS. Aberrant regional activities, including enhanced fALFF in the motor area and reduced ReHo in the caudate, were also found in the KS group compared to the TD children. Further, using machine learning methods, brain network alterations in these regions accurately differentiated boys with KS from TD controls. Finally, we showed that the alterations of brain network properties not only effectively predict cognitive-behavioral impairment in boys with KS, but also appear to mediate the association between total testosterone level and language ability, a cognitive domain at particular risk for dysfunction in this condition. CONCLUSION: Our results offer an informatic neurobiological foundation for understanding cognitive-behavioral impairments in individuals with KS and contribute to our understanding of the interplay between pubertal status, brain function, and cognitive-behavioral outcome in this population.

6.
Hum Brain Mapp ; 44(10): 4028-4039, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37126641

RESUMO

Turner syndrome (TS) is a common sex chromosome aneuploidy in females associated with various physical, cognitive, and socio-emotional phenotypes. However, few studies have examined TS-associated alterations in the development of cortical gray matter volume and the two components that comprise this measure-surface area and thickness. Moreover, the longitudinal direct (i.e., genetic) and indirect (i.e., hormonal) effects of X-monosomy on the brain are unclear. Brain structure was assessed in 61 girls with TS (11.3 ± 2.8 years) and 55 typically developing girls (10.8 ± 2.3 years) for up to 4 timepoints. Surface-based analyses of cortical gray matter volume, thickness, and surface area were conducted to examine the direct effects of X-monosomy present before pubertal onset and indirect hormonal effects of estrogen deficiency/X-monosomy emerging after pubertal onset. Longitudinal analyses revealed that, whereas typically developing girls exhibited normative declines in gray matter structure during adolescence, this pattern was reduced or inverted in TS. Further, girls with TS demonstrated smaller total surface area and larger average cortical thickness overall. Regionally, the TS group exhibited decreased volume and surface area in the pericalcarine, postcentral, and parietal regions relative to typically developing girls, as well as larger volume in the caudate, amygdala, and temporal lobe regions and increased thickness in parietal and temporal regions. Surface area alterations were predominant by age 8, while maturational differences in thickness emerged by age 10 or later. Taken together, these results suggest the involvement of both direct and indirect effects of X-chromosome haploinsufficiency on brain development in TS.


Assuntos
Síndrome de Turner , Humanos , Feminino , Síndrome de Turner/diagnóstico por imagem , Síndrome de Turner/psicologia , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Monossomia
7.
J Neurosci Res ; 101(12): 1803-1813, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37654210

RESUMO

Gender-based microaggressions have been associated with persistent disparities between women and men in academia. Little is known about the neural mechanisms underlying those often subtle and unintentional yet detrimental behaviors. Here, we assessed the neural responses to gender-based microaggressions in 28 early career faculty in medicine (N = 16 female, N = 12 male sex) using fMRI. Participants watched 33 videos of situations demonstrating gender-based microaggressions and control situations in academic medicine. Video topics had been previously identified through real-life anecdotes about microaggression from women faculty and were scripted and reenacted using professional actors. Primary voxel-wise analyses comparing group differences in activation elucidated a significant group by condition interaction in a right-lateralized cluster across the frontal (inferior and middle frontal gyri, frontal pole, precentral gyrus, postcentral gyrus) and parietal lobes (supramarginal gyrus, angular gyrus). Whereas women faculty exhibited reduced activation in these regions during the microaggression relative to the control condition, the opposite was true for men. Posthoc analyses showed that these patterns were significantly associated with the degree to which participants reported feeling judged for their gender in academic medicine. Lastly, secondary exploratory ROI analyses showed significant between-group differences in the right dorsolateral prefrontal cortex and inferior frontal gyrus. Women activated these two regions less in the microaggression condition compared to the control condition, whereas men did not. These findings indicate that the observation of gender-based microaggressions results in a specific pattern of neural reactivity in women early career faculty.


Assuntos
Encéfalo , Microagressão , Humanos , Masculino , Feminino , Encéfalo/diagnóstico por imagem , Emoções/fisiologia , Córtex Pré-Frontal , Lobo Frontal
8.
Mol Psychiatry ; 27(3): 1542-1551, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35087195

RESUMO

Mounting evidence supports the role of the Ras/mitogen-activated protein kinase (Ras/MAPK) pathway in neurodevelopmental disorders. Here, the authors used a genetics-first approach to examine how Ras/MAPK pathogenic variants affect the functional organization of the brain and cognitive phenotypes including weaknesses in attention and inhibition. Functional MRI was used to examine resting state functional connectivity (RSFC) in association with Ras/MAPK pathogenic variants in children with Noonan syndrome (NS). Participants (age 4-12 years) included 39 children with NS (mean age 8.44, SD = 2.20, 25 females) and 49 typically developing (TD) children (mean age 9.02, SD = 9.02, 33 females). Twenty-eight children in the NS group and 46 in the TD group had usable MRI data and were included in final analyses. The results indicated significant hyperconnectivity for the NS group within canonical visual, ventral attention, left frontoparietal and limbic networks (p < 0.05 FWE). Higher connectivity within canonical left frontoparietal and limbic networks positively correlated with cognitive function within the NS but not the TD group. Further, the NS group demonstrated significant group differences in seed-based striatal-frontal connectivity (Z > 2.6, p < 0.05 FWE). Hyperconnectivity within canonical brain networks may represent an intermediary phenotype between Ras/MAPK pathogenic variants and cognitive phenotypes, including weaknesses in attention and inhibition. Altered striatal-frontal connectivity corresponds with smaller striatal volume and altered white matter connectivity previously documented in children with NS. These results may indicate delayed maturation and compensatory mechanisms and they are important for understanding the pathophysiology underlying cognitive phenotypes in NS and in the broader population of children with neurodevelopmental disorders.


Assuntos
Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno , Substância Branca , Proteínas ras , Atenção/fisiologia , Encéfalo/enzimologia , Encéfalo/patologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Substância Branca/enzimologia , Substância Branca/patologia , Proteínas ras/metabolismo
9.
Mol Psychiatry ; 27(9): 3768-3776, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35595977

RESUMO

Girls with fragile X syndrome (FXS) often manifest significant symptoms of avoidance, anxiety, and arousal, particularly in the context of social interaction. However, little is currently known about the associations among neurobiological, biobehavioral such as eye gaze pattern, and social-cognitive dysfunction in real-world settings. In this study, we sought to characterize brain network properties and eye gaze patterns in girls with FXS during natural social interaction. Participants included 42 girls with FXS and 31 age- and verbal IQ-matched girls (control). Portable functional near-infrared spectroscopy (fNIRS) and an eye gaze tracker were used to investigate brain network alterations and eye gaze patterns associated with social-cognitive dysfunction in girls with FXS during a structured face-to-face conversation. Compared to controls, girls with FXS showed significantly increased inter-regional functional connectivity and greater excitability within the prefrontal cortex (PFC), frontal eye field (FEF) and superior temporal gyrus (STG) during the conversation. Girls with FXS showed significantly less eye contact with their conversational partner and more unregulated eye gaze behavior compared to the control group. We also demonstrated that a machine learning approach based on multimodal data, including brain network properties and eye gaze patterns, was predictive of multiple domains of social-cognitive behaviors in girls with FXS. Our findings expand current knowledge of neural mechanisms and eye gaze behaviors underlying naturalistic social interaction in girls with FXS. These results could be further evaluated and developed as intermediate phenotypic endpoints for treatment trial evaluation in girls with FXS.


Assuntos
Síndrome do Cromossomo X Frágil , Feminino , Humanos , Fixação Ocular , Interação Social , Encéfalo , Cognição
10.
Horm Behav ; 149: 105300, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36640638

RESUMO

Turner syndrome (TS), a common neurogenetic disorder caused by complete or partial absence of an X chromosome in females, is characterized by distinct physical, cognitive, and social-emotional features. Girls with TS typically display average overall intellectual functioning with relative strength in verbal abilities and weaknesses in visuospatial processing, executive function (EF), and social cognition. This study was designed to better understand longitudinal trajectories of cognitive and social-emotional domains commonly affected in TS. Participants included 57 girls with monosomic 45,X TS and 55 age- and verbal-IQ matched girls who completed behavioral, child-report, and parent-report measures across four timepoints. Group differences in visuospatial processing, EF, social cognition, and anxiety were assessed longitudinally. Potential effects of estrogen replacement therapy (ERT) were assessed cross-sectionally on an exploratory basis. The TS group showed poorer performance on measures of visuospatial processing, EF, and social cognition, but not anxiety, compared to controls throughout childhood and adolescence. There were no significant group differences in the trajectory of skill development over time. Exploratory analyses within the TS group revealed that girls who were receiving ERT showed better performance on measures of overall IQ, expressive vocabulary, and visuospatial processing compared to those not receiving ERT. Consistent with existing literature, weaknesses in visuospatial processing, EF, and social competence among girls with TS persisted throughout childhood and adolescence. Exploratory analyses suggest that ERT may help improve some aspects of cognitive function in TS, although other pre-existing, nonhormonal differences between the two TS subgroups may alternatively explain these findings, given our study design. Future studies are needed to examine potential impacts of ERT on cognitive and social-emotional development in TS.


Assuntos
Cognição Social , Síndrome de Turner , Feminino , Humanos , Adolescente , Criança , Habilidades Sociais , Síndrome de Turner/genética , Síndrome de Turner/psicologia , Cognição , Função Executiva
11.
Dev Med Child Neurol ; 65(11): 1520-1529, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37130201

RESUMO

AIM: We investigated neuropsychiatric outcomes in children with Noonan syndrome and addressed limitations in previous research with a focus on prepubertal children, comparison to typically developing children, comprehensive neuropsychiatric evaluation, and controlling for overall cognitive abilities. METHOD: Forty-five children with Noonan syndrome (mean = 8 years 6 months, SD = 2 years 2 months; 29 females) and 40 typically developing children (mean = 8 years 9 months, SD = 2 years; 22 females) were evaluated with objective, parent-report, and psychiatric interview measures. RESULTS: Children with Noonan syndrome demonstrated elevated symptoms across attention-deficit/hyperactivity disorder (ADHD) (attention, hyperactivity, and inhibition), autism spectrum disorder (ASD) (maintaining social relationships, behavioral rigidity, and sensory sensitivity), and oppositional defiant disorder (ODD) (aggression) symptom clusters relative to typically developing children (all p < 0.05). Group differences in nearly all parent-report measures were significant after accounting for variations in intellectual functioning, suggesting that increased neurodevelopmental symptoms are not simply driven by overall intelligence. Twenty out of 42 children with Noonan syndrome met criteria for ADHD, eight out of 42 for ODD, and 11 out of 43 demonstrated clinically significant symptoms seen in children with ASD. INTERPRETATION: Children with Noonan syndrome are at increased risk for a range of ADHD, ASD, and ODD associated symptoms. A dimensional approach reveals significant ASD symptoms in Noonan syndrome that do not emerge when using the currently accepted categorical diagnostic approach. WHAT THIS PAPER ADDS: Neuropsychiatric disorders occur in more than half of children with Noonan syndrome. Children with Noonan syndrome demonstrate highly variable neurodevelopmental symptom profiles. Children with Noonan syndrome display variable impairments in attention, hyperactivity, and inhibition. Specific social concerns include behavioral rigidity, transitions, and difficulties maintaining social relationships. Children with Noonan syndrome display variably elevated levels of aggression and emotional dysregulation.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Síndrome de Noonan , Feminino , Humanos , Criança , Síndrome de Noonan/complicações , Síndrome de Noonan/genética , Transtorno do Espectro Autista/psicologia , Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Atenção , Fenótipo
12.
Cereb Cortex ; 32(11): 2310-2320, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-34546362

RESUMO

Fragile X syndrome is a genetic condition associated with alterations in brain and subsequent cognitive development. However, due to a milder phenotype relative to males, females with fragile X syndrome are underrepresented in research studies. In the current study, we investigate neuroanatomical differences in young females (age range: 6.03-16.32 years) with fragile X syndrome (N = 46) as compared to age-, sex-, and verbal abilities-matched participants (comparison group; N = 35). Between-group analyses of whole-brain and regional brain volumes were assessed using voxel-based morphometry. Results demonstrate significantly larger total gray and white matter volumes in girls with fragile X syndrome compared to a matched comparison group (Ps < 0.001). In addition, the fragile X group showed significantly larger gray matter volume in a bilateral parieto-occipital cluster and a right parieto-occipital cluster (Ps < 0.001). Conversely, the fragile X group showed significantly smaller gray matter volume in the bilateral gyrus rectus (P < 0.03). Associations between these regional brain volumes and key socio-emotional variables provide insight into gene-brain-behavior relationships underlying the fragile X syndrome phenotype in females. These findings represent the first characterization of a neuroanatomical phenotype in a large sample of girls with fragile X syndrome and expand our knowledge about potential neurodevelopmental mechanisms underlying cognitive-behavioral outcomes in this condition.


Assuntos
Síndrome do Cromossomo X Frágil , Substância Branca , Encéfalo/diagnóstico por imagem , Feminino , Síndrome do Cromossomo X Frágil/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Substância Branca/diagnóstico por imagem
13.
Dev Psychopathol ; : 1-12, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37185087

RESUMO

Children with fragile X syndrome (FXS) often avoid eye contact, a behavior that is potentially related to hyperarousal. Prior studies, however, have focused on between-person associations rather than coupling of within-person changes in gaze behaviors and arousal. In addition, there is debate about whether prompts to maintain eye contact are beneficial for individuals with FXS. In a study of young females (ages 6-16), we used eye tracking to assess gaze behavior and pupil dilation during social interactions in a group with FXS (n = 32) and a developmentally similar comparison group (n = 23). Participants engaged in semi-structured conversations with a female examiner during blocks with and without verbal prompts to maintain eye contact. We identified a social-behavioral and psychophysiological profile that is specific to females with FXS; this group exhibited lower mean levels of eye contact, significantly increased mean pupil dilation during conversations that included prompts to maintain eye contact, and showed stronger positive coupling between eye contact and pupil dilation. Our findings strengthen support for the perspective that gaze aversion in FXS reflects negative reinforcement of social avoidance behavior. We also found that behavioral skills training may improve eye contact, but maintaining eye contact appears to be physiologically taxing for females with FXS.

14.
Proc Natl Acad Sci U S A ; 117(37): 23066-23072, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32843342

RESUMO

Humans have an extraordinary ability to interact and cooperate with others. Despite the social and evolutionary significance of collaboration, research on finding its neural correlates has been limited partly due to restrictions on the simultaneous neuroimaging of more than one participant (also known as hyperscanning). Several studies have used dyadic fMRI hyperscanning to examine the interaction between two participants. However, to our knowledge, no study to date has aimed at revealing the neural correlates of social interactions using a three-person (or triadic) fMRI hyperscanning paradigm. Here, we simultaneously measured the blood-oxygenation level-dependent signal from 12 triads (n = 36 participants), while they engaged in a collaborative drawing task based on the social game of Pictionary General linear model analysis revealed increased activation in the brain regions previously linked with the theory of mind during the collaborative phase compared to the independent phase of the task. Furthermore, using intersubject correlation analysis, we revealed increased synchronization of the right temporo-parietal junction (R TPJ) during the collaborative phase. The increased synchrony in the R TPJ was observed to be positively associated with the overall team performance on the task. In sum, our paradigm revealed a vital role of the R TPJ among other theory-of-mind regions during a triadic collaborative drawing task.


Assuntos
Encéfalo/fisiologia , Neurônios/fisiologia , Adulto , Mapeamento Encefálico/métodos , Cognição/fisiologia , Feminino , Humanos , Relações Interpessoais , Colaboração Intersetorial , Imageamento por Ressonância Magnética/métodos , Masculino , Neuroimagem/métodos , Comportamento Social , Teoria da Mente/fisiologia
15.
Proc Natl Acad Sci U S A ; 117(9): 4864-4873, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32071206

RESUMO

In both Turner syndrome (TS) and Klinefelter syndrome (KS) copy number aberrations of the X chromosome lead to various developmental symptoms. We report a comparative analysis of TS vs. KS regarding differences at the genomic network level measured in primary samples by analyzing gene expression, DNA methylation, and chromatin conformation. X-chromosome inactivation (XCI) silences transcription from one X chromosome in female mammals, on which most genes are inactive, and some genes escape from XCI. In TS, almost all differentially expressed escape genes are down-regulated but most differentially expressed inactive genes are up-regulated. In KS, differentially expressed escape genes are up-regulated while the majority of inactive genes appear unchanged. Interestingly, 94 differentially expressed genes (DEGs) overlapped between TS and female and KS and male comparisons; and these almost uniformly display expression changes into opposite directions. DEGs on the X chromosome and the autosomes are coexpressed in both syndromes, indicating that there are molecular ripple effects of the changes in X chromosome dosage. Six potential candidate genes (RPS4X, SEPT6, NKRF, CX0rf57, NAA10, and FLNA) for KS are identified on Xq, as well as candidate central genes on Xp for TS. Only promoters of inactive genes are differentially methylated in both syndromes while escape gene promoters remain unchanged. The intrachromosomal contact map of the X chromosome in TS exhibits the structure of an active X chromosome. The discovery of shared DEGs indicates the existence of common molecular mechanisms for gene regulation in TS and KS that transmit the gene dosage changes to the transcriptome.


Assuntos
Dosagem de Genes , Regulação da Expressão Gênica , Genômica , Síndrome de Klinefelter/genética , Síndrome de Turner/genética , Cromossomo X , Animais , Cromatina/química , Cromossomos Humanos X , Metilação de DNA , Feminino , Filaminas , Humanos , Cariótipo , Masculino , Mamíferos/genética , Acetiltransferase N-Terminal A , Acetiltransferase N-Terminal E , Proteínas Serina-Treonina Quinases/genética , Receptor PAR-2 , Proteínas Repressoras/genética , Septinas , Transcriptoma/genética , Inativação do Cromossomo X
16.
Pediatr Diabetes ; 23(8): 1674-1686, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36131363

RESUMO

OBJECTIVE: Both diabetes and obesity can affect the brain, yet their impact is not well characterized in children with type 2 (T2) diabetes and obesity. This pilot study aims to explore differences in brain function and cognition in adolescents with T2 diabetes and obesity and nondiabetic controls with obesity and lean controls. RESEARCH DESIGN AND METHODS: Participants were 12-17 years old (5 T2 diabetes with obesity [mean HgbA1C 10.9%], 6 nondiabetic controls with obesity and 10 lean controls). Functional MRI (FMRI) during hyperglycemic/euglycemic clamps was performed in the T2 diabetes group. RESULTS: When children with obesity, with and without diabetes, were grouped (mean BMI 98.8%), cognitive scores were lower than lean controls (BMI 58.4%) on verbal, full scale, and performance IQ, visual-spatial and executive function tests. Lower scores correlated with adiposity and insulin resistance but not HgbA1C. No significant brain activation differences during task based and resting state FMRI were noted between children with obesity (with or without diabetes) and lean controls, but a notable effect size for the visual-spatial working memory task and resting state was observed. CONCLUSIONS: In conclusion, our pilot study suggests that obesity, insulin resistance, and dysglycemia may contribute to relatively poorer cognitive function in adolescents with T2 diabetes and obesity. Further studies with larger sample size are needed to assess if cognitive decline in children with obesity, with and without T2 diabetes, can be prevented or reversed.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Criança , Humanos , Adolescente , Projetos Piloto , Encéfalo , Obesidade , Memória de Curto Prazo
17.
Cereb Cortex ; 31(3): 1489-1499, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33119062

RESUMO

We examined whether PTPN11 mutations affect the white matter connectivity of the developing human brain. Germline activating mutations to the PTPN11 gene cause overactivation of the Ras-Mitogen-Activated Protein Kinase pathway. Activating mutations cause Noonan syndrome (NS), a developmental disorder associated with hyperactivity and cognitive weakness in attention, executive function, and memory. In mouse models of NS, PTPN11 mutations cause reduced axon myelination and white matter formation, while the effects of PTPN11 mutations on human white matter are largely unknown. For the first time, we assessed 17 children with NS (9 females, mean age, 8.68 ± 2.39) and 17 age- and sex-matched controls (9 female, mean age, 8.71 ± 2.40) using diffusion brain imaging for white matter connectivity and structural magnetic resonance imaging to characterize brain morphology. Children with NS showed widespread reductions in fractional anisotropy (FA; 82 613 voxels, t = 1.49, P < 0.05) and increases in radial diffusivity (RD; 94 044 voxels, t = 1.22, P < 0.05), denoting decreased white matter connectivity. In NS, the FA of the posterior thalamic radiation correlated positively with inhibition performance, whereas connectivity in the genu of the corpus callosum was inversely associated with auditory attention performance. Additionally, we observed negative and positive correlations, respectively, between memory and the cingulum hippocampus, and memory and the cingulum cingulate gyrus. These findings elucidate the neural mechanism underpinning the NS cognitive phenotype, and may serve as a brain-based biomarker.


Assuntos
Encéfalo/patologia , Vias Neurais/patologia , Síndrome de Noonan/patologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Substância Branca/patologia , Criança , Imagem de Tensor de Difusão/métodos , Feminino , Mutação em Linhagem Germinativa , Humanos , Masculino , Síndrome de Noonan/genética , Transdução de Sinais/genética
18.
Dev Med Child Neurol ; 64(3): 331-339, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34431088

RESUMO

AIM: To study sex differences in attention-deficit/hyperactivity disorder (ADHD) symptoms, we explored whether X chromosome absence or excess is independently associated with deficits in attention and hyperactivity, executive function, and processing speed. METHOD: We assessed 116 children (ages 3y 10mo-11y 11mo, mean 8y 5mo, SD 1y 11mo) with a variable number of sex chromosomes: 36 females with Turner syndrome (45, X0), 20 males with Klinefelter syndrome (47, XXY), 37 typically developing females (XX), and 23 typically developing males (XY). RESULTS: X chromosome absence was associated with increased attention problems, hyperactivity, and deficits in inhibitory control, compared with female children with XX (all p<0.003). Conversely, X chromosome excess was associated with weakness in working memory (p=0.018) and approached significance for attention problems (p=0.071) but not with hyperactivity, or weakness in inhibitory control relative to male children with XY. Using non-parametric effect size to quantify the clinical effect revealed that X chromosome absence affected attention, hyperactivity, executive function, and processing speed (all r>0.4), while X excess affected in-laboratory as well as parent-reported working memory (all r>0.4). INTERPRETATION: Our observations provide compelling evidence that the absence or excess of an X chromosome distinctly affects cognition and behaviors associated with ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Cromossomos Humanos X/genética , Função Executiva/fisiologia , Inibição Psicológica , Memória de Curto Prazo/fisiologia , Desempenho Psicomotor/fisiologia , Caracteres Sexuais , Criança , Pré-Escolar , Feminino , Humanos , Síndrome de Klinefelter/genética , Síndrome de Klinefelter/fisiopatologia , Masculino , Síndrome de Turner/genética , Síndrome de Turner/fisiopatologia
19.
Environ Res ; 212(Pt C): 113461, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35550812

RESUMO

BACKGROUND: Epidemiological studies suggest that exposure to p,p'-dichloro-diphenyl-trichloroethane (p,p'-DDT) is associated with poorer cognitive function in children and adolescents, but the neural mechanisms underlying this association remain unclear. OBJECTIVE: We investigated associations of prenatal and childhood exposure to p,p'-DDT and its metabolite p,p'-dichloro-diphenyl-dichloroethylene (p,p'-DDE) with cortical activation in adolescents using functional near-infrared spectroscopy (fNIRS). METHODS: We administered fNIRS to 95 adolescents from the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) aged 15-17 years. We assessed cortical activity in the frontal, temporal, and parietal brain regions while participants completed tasks of executive function, language comprehension, and social cognition. We measured serum p,p'-DDT and -DDE concentrations at age 9 years and then estimated exposure-outcome associations using linear regression models adjusted for sociodemographic characteristics. In secondary analyses, we back-extrapolated prenatal concentrations using prediction models and examined their association with cortical activation. RESULTS: Median (P25-P75) p,p'-DDT and -DDE concentrations in childhood were 1.4 (1-2.3) and 141.5 (75.0-281.3) ng/g lipid, respectively. We found that childhood exposure to p,p'-DDT and -DDE was associated with altered patterns of brain activation during tasks of cognition and executive functions. For example, we observed increased activity in the left frontal lobe during a language comprehension task (ß per 10 ng/g lipid increase of serum p,p'-DDE at age 9 years = 3.4; 95% CI: 0.0, 6.9 in the left inferior frontal lobe; and ß = 4.2; 95% CI: 0.9, 7.5 in the left superior frontal lobe). We found no sex differences in the associations of childhood p,p'-DDT and -DDE concentrations with neural activity. Associations between prenatal p,p'-DDT and p,p'-DDE concentrations and brain activity were similar to those observed for child p,p'-DDT and -DDE concentrations. CONCLUSIONS: Childhood p,p'-DDT and -DDE exposure may impact cortical brain activation, which could be an underlying mechanism for its previously reported associations with poorer cognitive function.


Assuntos
DDT , Diclorodifenil Dicloroetileno , Adolescente , Criança , Estudos de Coortes , DDT/toxicidade , Diclorodifenil Dicloroetileno/toxicidade , Feminino , Neuroimagem Funcional , Humanos , Lipídeos , Gravidez
20.
J Pediatr Psychol ; 47(1): 25-36, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34718672

RESUMO

OBJECTIVE: Children and adolescents, who have less developed coping skills, are affected by natural disasters and other traumatic events differently than adults. Emotional and behavioral effects are particularly pronounced during a pandemic-related disaster, when support networks that typically promote healthy coping, such as friends, teachers, and family members, may be less available. Children and adolescents with fragile X syndrome (FXS), who are at increased risk for developing anxiety and depression, may be particularly vulnerable to behavioral or emotional difficulties during a pandemic. This study examined the mental health outcomes of school-aged girls with FXS during the COVID-19 pandemic and associated stay-at-home orders. METHODS: Participants included 47 school-aged girls with FXS and 33 age- and developmentally matched comparison girls. Associations between COVID-19 behavioral and emotional outcomes and prior academic, adaptive, behavioral, and emotional functioning as well as prior maternal mental health and characteristics of the mother-child relationship were examined. Qualitative data from the parental report of emotional and behavioral responses to the pandemic were also obtained. RESULTS: Results indicate that school-aged girls with FXS demonstrate a distinct profile of COVID-19 related associations compared to the comparison group, such that pandemic-related worries and emotional impact of pandemic restrictions were predicted by prior mental health factors for the comparison group but by prior social, behavioral, and relational factors for the FXS group. CONCLUSIONS: Findings provide insight into factors that may confer risk or resilience for youth with special needs, suggesting potential therapeutic targets and informing public health initiatives in response to the pandemic.


Assuntos
COVID-19 , Síndrome do Cromossomo X Frágil , Adolescente , Adulto , Criança , Feminino , Síndrome do Cromossomo X Frágil/epidemiologia , Humanos , Saúde Mental , Pandemias , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa