Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 297
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(27): e2219179120, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37364117

RESUMO

The global ecological crisis of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water has gradually shifted from long-chain to short-chain PFASs; however, the widespread established PFAS adsorption technology cannot cope with the impact of such hydrophilic pollutants given the inherent defects of solid-liquid mass transfer. Herein, we describe a reagent-free and low-cost strategy to reduce the energy state of short-chain PFASs in hydrophobic nanopores by employing an in situ constructed confined water structure in activated carbon (AC). Through direct (driving force) and indirect (assisted slip) effects, the confined water introduced a dual-drive mode in the confined water-encapsulated activated carbon (CW-AC) and completely eliminated the mass transfer barrier (3.27 to 5.66 kcal/mol), which caused the CW-AC to exhibit the highest adsorption capacity for various short-chain PFASs (C-F number: 3-6) among parent AC and other adsorbents reported. Meanwhile, benefiting from the chain length- and functional group-dependent confined water-binding pattern, the affinity of the CW-AC surpassed the traditional hydrophobicity dominance and shifted toward hydrophilic short-chain PFASs that easily escaped treatment. Importantly, the ability of CW-AC functionality to directly transfer to existing adsorption devices was verified, which could treat 21,000 bed volumes of environment-related high-load (~350 ng/L short-chain PFAS each) real drinking water to below the World Health Organization's standard. Overall, our results provide a green and cost-effective in situ upgrade scheme for existing adsorption devices to address the short-chain PFAS crisis.

2.
Environ Sci Technol ; 58(1): 739-750, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38147428

RESUMO

Understanding the reaction mechanism of dissolved organic matter (DOM) during wastewater biotreatment is crucial for optimal DOM control. Here, we develop a directed paired mass distance (dPMD) method that constructs a molecular network displaying the reaction pathways of DOM. It couples direction inference and PMD analysis to extract the substrate-product relationships and delta masses of potentially paired reactants directly from sequential mass spectrometry data without formula assignment. Using this method, we analyze the influent and effluent samples from the bioprocesses of 12 wastewater treatment plants (WWTPs) and build a dPMD network to characterize the core reactome of DOM. The network shows that the first step of the transformation triggers reaction cascades that diversify the DOM, but the highly overlapped subsequent reaction pathways result in similar effluent DOM compositions across WWTPs despite varied influents. Mass changes exhibit consistent gain/loss preferences (e.g., +3.995 and -16.031) but different occurrences across WWTPs. Combined with genome-centric metatranscriptomics, we reveal the associations among dPMDs, enzymes, and microbes. Most enzymes are involved in oxygenation, (de)hydrogenation, demethylation, and hydration-related reactions but with different target substrates and expressed by various taxa, as exemplified by Proteobacteria, Actinobacteria, and Nitrospirae. Therefore, a functionally diverse community is pivotal for advanced DOM degradation.


Assuntos
Matéria Orgânica Dissolvida , Purificação da Água , Águas Residuárias , Bactérias
3.
Environ Sci Technol ; 58(10): 4648-4661, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38324528

RESUMO

With global eutrophication and increasingly stringent nitrogen discharge restrictions, dissolved organic nitrogen (DON) holds considerable potential to upgrade advanced wastewater denitrification because of its large contribution to low-nitrogen effluents and stronger stimulation effect for algae. Here, we show that DON from the postdenitrification systems dominates effluent eutrophication potential under different carbon sources. Methanol resulted in significantly lower DON concentrations (0.84 ± 0.03 mg/L) compared with the total nitrogen removal-preferred acetate (1.11 ± 0.02 mg/L) (p < 0.05, ANOVA). With our well-developed mathematical model (R2 = 0.867-0.958), produced DON instead of shared (persist in both influent and effluent) and/or removed DON was identified as the key component for effluent DON variation (Pearson r = 0.992, p < 0.01). The partial least-squares path modeling analysis showed that it is the microbial community (r = 0.947, p < 0.01) rather than the predicted metabolic functions (r = 0.040, p > 0.1) that affected produced DON. Carbon sources rebuild the microorganism-DON interaction by affecting the structure of microbial communities with different abilities to generate and recapture produced DON to finally regulate effluent DON. This study revalues the importance of carbon source selection and overturns the current rationality of pursuing only the total nitrogen removal efficiency by emphasizing DON.


Assuntos
Desnitrificação , Águas Residuárias , Matéria Orgânica Dissolvida , Carbono , Nitrogênio/análise , Nitrogênio/química , Eliminação de Resíduos Líquidos/métodos
4.
Environ Sci Technol ; 58(6): 2870-2880, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38181504

RESUMO

Researchers and engineers are committed to finding effective approaches to reduce dissolved organic nitrogen (DON) to meet more stringent effluent total nitrogen limits and minimize effluent eutrophication potential. Here, we provided a promising approach by adding specific doses of 2-hydroxy-1,4-naphthoquinone (HNQ) to postdenitrification bioreactors. This approach of adding a small dosage of 0.03-0.1 mM HNQ effectively reduced the concentrations of DON in the effluent (ANOVA, p < 0.05) by up to 63% reduction of effluent DON with a dosing of 0.1 mM HNQ when compared to the control bioreactors. Notably, an algal bioassay indicated that DON played a dominant role in stimulating phytoplankton growth, thus effluent eutrophication potential in bioreactors using 0.1 mM HNQ dramatically decreased compared to that in control bioreactors. The microbe-DON correlation analysis showed that HNQ dosing modified the microbial community composition to both weaken the production and promote the uptake of labile DON, thus minimizing the effluent DON concentration. The toxic assessment demonstrated the ecological safety of the effluent from the bioreactors using the strategy of HNQ addition. Overall, HNQ is a promising redox mediator to reduce the effluent DON concentration with the purpose of meeting low effluent total nitrogen levels and remarkably minimizing effluent eutrophication effects.


Assuntos
Naftoquinonas , Eliminação de Resíduos Líquidos , Águas Residuárias , Matéria Orgânica Dissolvida , Nitrogênio/análise , Eutrofização
5.
Environ Res ; 251(Pt 2): 118678, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38493846

RESUMO

The frequent detection of persistent per- and polyfluoroalkyl substances (PFAS) in organisms and environment coupled with surging evidence for potential detrimental impacts, have attracted widespread attention throughout the world. In order to reveal research hotspots and trends of technologies for PFAS removal, herein, we performed a data-driven analysis of 3975 papers and 436 patents from Web of Science Core Collection and Derwent Innovation Index databases up to 2023. The results showed that China and the USA led the way in the research of PFAS removal with outstanding contributions to publications. The progression generally transitioned from accidental discovery of decomposition, to experimentation with removal effects and mechanisms of existing methods, and finally to enhanced defluorination and mechanism-driven design approaches. The keywords co-occurrence network and technology classification together revealed the main knowledge framework, which was constructed and correlated through contaminants, substrates, materials, processes and properties. Moreover, adsorption was demonstrated to be the dominant removal process among the current studies. Subsequently, we concluded the principles, advances and drawbacks of enrichment and separation, biological methods, advanced oxidation and reduction processes. Further exploration indicated the hotspots such as alternatives and precursors for PFAS ("genx": 1.258, "f-53b": 0.337), degradable mineralization technologies ("photocatalytic degrad": 0.529, "hydrated electron": 0.374), environment-friendly remediation technologies ("phytoremedi": 0.939, "constructed wetland": 0.462) and combination with novel materials ("metal-organic framework": 1.115, "layered double hydroxid": 0.559) as well as computer science ("molecular dynamics simul": 0.559, "machine learn"). Furthermore, the future direction of technological innovation might lie in high-performance processes that minimize secondary pollution, the development of recyclable and renewable treatment agents, and collaborative control strategies for multiple pollutants. Overall, this study offers comprehensive and objective review for researchers and industry professionals in this field, enabling rapid access to knowledge guidance and insights into research frontiers.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Fluorocarbonos/análise , Fluorocarbonos/química , Recuperação e Remediação Ambiental/métodos , Recuperação e Remediação Ambiental/tendências , Adsorção
6.
Environ Res ; 242: 117709, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37993049

RESUMO

The biological denitrification of high-nitrate wastewater (HNW) is primarily hindered by insufficient carbon sources and excessive nitrite accumulation. In this study, micromagnetic carriers with varying micromagnetic field (MMF) strengths (0.0, 0.3, 0.6, 0.9 mT) were employed to enhance the denitrification of HNW using waste molasses (WMs) as a carbon source. The results revealed that 0.6 mT MMF significantly improved the total nitrogen removal (TN) efficiency at 96.3%. A high nitrate (NO3--N) removal efficiency at 99.3% with a low nitrite (NO2--N) accumulation at 25.5 mg/L was achieved at 0.6 mT MMF. The application of MMF facilitated the synthesis of adenosine triphosphate (ATP) and stimulated denitrifying enzymes (e.g., nitrate reductase (NAR), nitrite reductase (NIR), and nitric oxide reductase (NOR)), which thereby promoting denitrification. Moreover, the effluent chemical oxygen demand (COD), tryptophan and fulvic-like substances exhibited their lowest levels at 0.6 mT MMF. Analysis through 16S ribosomal ribonucleic acid gene sequencing indicated a significant enrichment of denitrifying bacteria including Castellaniella Klebsiella under the influence of MMF. Besides, the proliferation of Acholeplasma, Klebsiella and Proteiniphilum at 0.6 mT MMF promoted the hydrolysis and acidification of WMs. This study offers new insights into the enhanced utilization of WMs and the denitrification of HNW through the application of MMF.


Assuntos
Nitratos , Águas Residuárias , Nitritos , Desnitrificação , Elétrons , Melaço , Reatores Biológicos/microbiologia , Carbono , Nitrogênio
7.
Hum Hered ; 88(1): 68-78, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37100034

RESUMO

INTRODUCTION: The role of ARRB2 in cardiovascular disease has recently gained increasing attention. However, the association between ARRB2 polymorphisms and heart failure (HF) has not yet been investigated. METHODS: A total of 2,386 hospitalized patients with chronic HF were enrolled as the first cohort and followed up for a mean period of 20.2 months. Meanwhile, ethnically and geographically matched 3,000 individuals without evidence of HF were included as healthy controls. We genotyped the common variant in ARRB2 gene to identify the association between variant and HF. A replicated independent cohort enrolling 837 patients with chronic HF was applied to validate the observed association. A series of function analyses were conducted to illuminate the underlying mechanism. RESULTS: We identified a common variant rs75428611 associated with the prognosis of HF in two-stage population: adjusted p = 0.001, hazard ratio (HR) = 1.31 (1.11-1.54) in additive model and adjusted p = 0.001, HR = 1.39 (1.14-1.69) in dominant model in first-stage population; adjusted p = 0.04, HR = 1.41 (1.02-1.95) in additive model and adjusted p = 0.03, HR = 1.51 (1.03-2.20) in dominant model in replicated stage. However, rs75428611 did not significantly associate with the risk of HF. Functional analysis indicated that rs75428611-G allele increased the promoter activity and the mRNA expression level of ARRB2 by facilitating transcription factor SRF binding but not the A allele. CONCLUSIONS: Our findings demonstrated that rs75428611 in promoter of ARRB2 was associated with the risk of HF mortality. It is a promising potential treatment target for HF.


Assuntos
Doenças Cardiovasculares , Insuficiência Cardíaca , Humanos , Prognóstico , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/terapia , Polimorfismo Genético , Doenças Cardiovasculares/genética , Doença Crônica , Regiões Promotoras Genéticas/genética , beta-Arrestina 2/genética
8.
J Environ Manage ; 351: 119734, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38071915

RESUMO

Biological denitrification is the dominant method for NO3- removal from wastewater, while high NO3- leads to NO2- accumulation and inhibits denitrification performance. In this study, different weak magnetic carriers (0, 0.3, 0.6, 0.9 mT) were used to enhance biological denitrification at NO3- of 50-2400 mg/L. The effect of magnetic carriers on the removal and mechanism of denitrification of high NO3- was investigated. The results showed that 0.6 and 0.9 mT carriers significantly enhanced the TN removal efficiency (>99%) and reduced the accumulation of NO2- (by > 97%) at NO3- of 1200-2400 mg/L 0.6 and 0.9 mT carriers stimulated microbial electron transport by improving the abundances of coenzyme Q-cytochrome C reductase (by 4.44-23.30%) and cytochrome C (by 2.90-16.77%), which contributed to the enhanced elimination of NO3- and NO2-. 0.6 and 0.9 mT carriers increased the activities of NAR (by 3.74-37.59%) and NIR (by 5.01-8.24%). The abundance of narG genes in 0.6 and 0.9 mT was 1.47-2.35 and 1.38-1.75 times that of R1, respectively, and the abundance of nirS genes was 1.49-2.83 and 1.55-2.39 times that of R1, respectively. Denitrifying microorganisms, e.g., Halomonas, Thauera and Pseudomonas were enriched at 0.6 and 0.9 mT carriers, which benefited to the advanced denitrification performance. This study suggests that weak magnetic carriers can help to enhance the biological denitrification of high NO3- wastewater.


Assuntos
Nitratos , Nitritos , Nitratos/análise , Águas Residuárias , Transporte de Elétrons , Desnitrificação , Dióxido de Nitrogênio , Citocromos c , Elétrons , Bactérias/genética , Nitrogênio , Reatores Biológicos/microbiologia
9.
J Environ Manage ; 355: 120444, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422849

RESUMO

Sludge alkaline fermentation liquid (SAFL) is a promising alternative to acetate for improving biological nitrogen removal (BNR) from wastewater. SAFL inevitably contains some refractory compounds, while the characteristics of dissolved organic matter (DOM) in effluent from SAFL-fed BNR process remain unclear. In this study, the molecular weight distribution, fluorescent composition and molecular profiles of DOM in effluent from SAFL and acetate-fed sequencing batch reactors (S-SBRs and A-SBRs, respectively) at different hydraulic retention time (12 h and 24 h) was comparatively investigated. Two carbon sources resulted in similar effluent TN, but a larger amount of DOM, which was bio-refractory or microorganisms-derived, was found in effluent of S-SBRs. Compared to acetate, SAFL increased the proportion of large molecular weight organics and humic-like substances in effluent DOM by 74.87%-101.3% and 37.52%-48.35%, respectively, suggesting their bio-refractory nature. Molecular profiles analysis revealed that effluent DOM of S-SBRs exhibited a more diverse composition and a higher proportion of lignin-like molecules. Microorganisms-derived molecules were found to be the dominant fraction (71.51%-72.70%) in effluent DOM (<800 Da) of S-SBRs. Additionally, a prolonged hydraulic retention time enriched Bacteroidota, Haliangium and unclassified_f_Comamonadaceae, which benefited the degradation of DOM in S-SBRs. The results help to develop strategies on reducing effluent DOM in SAFL-fed BNR process.


Assuntos
Matéria Orgânica Dissolvida , Esgotos , Esgotos/química , Fermentação , Reatores Biológicos , Nitrogênio , Acetatos
10.
J Environ Sci (China) ; 142: 33-42, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38527894

RESUMO

Biotoxicity assessment results of environmental waters largely depend on the sample extraction protocols that enrich pollutants to meet the effect-trigger thresholds of bioassays. However, more chemical mixture does not necessarily translate to higher combined biotoxicity. Thus, there is a need to establish the link between chemical extracting efficiency and biotoxicity outcome to standardize extraction methods for biotoxicity assessment of environmental waters. This study compares the performance of five different extraction phases in solid phase extraction (SPE), namely HLB, HLB+Coconut, C18 cartridge, C18 disk and Strata-X, and evaluated their chemical extracting efficiencies and biotoxicity outcomes. We quantitatively assessed cytotoxicity, acute toxicity, genotoxicity, estrogenic activity, and neurotoxicity of the extracts using in vitro bioassays and characterized the chemical extracting efficiencies of the SPE methods through chemical recoveries of 23 model compounds with different polarities and total organic carbon. Using Pareto ranking, we identified HLB+Coconut as the optimal SPE method, which exhibited the highest level of water sample biotoxicity and recovered the most chemicals in water samples. We found that the biotoxicity outcomes of the extracted water samples significantly and positively correlated with the chemical extracting efficiencies of the SPE methods. Moreover, we observed synchronous changing patterns in biotoxicity outcome and chemical extracting efficiencies in response to increasing sample volumes per cartridge (SVPC) during SPE. Our findings underscore that higher chemical extracting efficiency of SPE corresponds to higher biotoxicity outcome of environmental water samples, providing a scientific basis for standardization of SPE methods for adequate assessment of biotoxicities of environmental waters.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Águas Residuárias/toxicidade , Água/química , Extração em Fase Sólida/métodos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
11.
Anal Chem ; 95(11): 4904-4913, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36942460

RESUMO

The accurate detection of phosphate in water is very important to prevent water eutrophication and ensure the health of water quality. However, traditional phosphomolybdenum blue spectrophotometry is not sensitive, is time-consuming, and demands large amounts of chemical reagents. Therefore, highly sensitive, rapid, and environmentally friendly Pi detection methods are urgently needed. Here, we developed a bioluminescence resonance energy transfer (BRET)-based biosensor, which can detect Pi in water quickly, highly sensitively, and highly selectively. The NanoLuc and the Venus fluorescent protein were selected as the bioluminescence donor and energy acceptor, respectively. The best-performing BRET sensor variant, VenusΔC10-PΔC12-ΔN4Nluc, was identified by Pi-specific binding protein (PiBP) screening and systematic truncation. Single-factor experiments optimized the key parameters affecting the detection performance of the sensor. Under the optimal detection conditions, the detection limit of this method was 1.3 µg·L-1, the detection range was 3.3-434 µg·L-1, and it had excellent selectivity, repeatability, and stability. This low-cost and environment-friendly BRET sensor showed a good application prospect in real water quality detection.


Assuntos
Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Técnicas Biossensoriais , Técnicas de Transferência de Energia por Ressonância de Bioluminescência/métodos , Fosfatos , Transferência de Energia , Técnicas Biossensoriais/métodos , Medições Luminescentes/métodos
12.
Anal Chem ; 95(5): 2975-2982, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36576968

RESUMO

A novel sandwich-type biosensor denoted as "MIP-analyte-Ab" was constructed on a glassy carbon electrode modified with gold nanoparticles (AuNPs@GCE), which is dedicated to explore a general solution for electrochemical tests in a relatively high potential range on Au electrodes. In particular, parasitic reactions of Au oxidation severely hindered the electrochemiluminescence (ECL) reactions of the Ru(bpy)32+/tripropylamine (TPrA) system. In this work, we designed an ultra-fast redox pulse to alleviate reversible oxidation of Au with a potential range of -0.5 to 0.9 V. Stable ECL signals were generated in the last 3 ms of each run (RSD = 5.86%), and interesting mechanisms were revealed. The ultra-high-frequency sampler indicated that free diffusion of TPrA•+ was the rate-determining step at 0.9 V, and it followed a totally different route with ECL at 1.3 V. Furthermore, we proposed a particular ECL reaction route at 0.9 V with C5 desosamine of the analyte, azithromycin, involved for the first time, based on results of radical identification. We believe that our work paved the way for the application of Au-based sandwich-type biosensors in environmental monitoring.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Ouro , Medições Luminescentes/métodos , Oxirredução , Técnicas Biossensoriais/métodos , Eletrodos , Técnicas Eletroquímicas/métodos
13.
Environ Sci Technol ; 57(5): 2118-2128, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36608328

RESUMO

Dissolved organic sulfur (DOS) is a significant part of effluent organic matter of wastewater treatment plants (WWTPs) and poses a potential ecological risk for receiving waters. However, the oxic process is a critical unit of biological wastewater treatment for microorganisms performing organic matter removal, wherein DOS transformation and its mechanism are poorly understood. This study investigated the transformation of DOS during the oxic process in 47 full-scale municipal WWTPs across China from molecular and microbial aspects. Surprisingly, evident differences in DOS variations (ΔDOS) separated sampled WWTPs into two groups: 28 WWTPs with decreased DOS concentrations in effluents (ΔDOS < 0) and 19 WWTPs with increased DOS (ΔDOS > 0). These two groups also presented differences in DOS molecular characteristics: higher nitrogen/carbon (N/C) ratios (0.030) and more peptide-like DOS (8.2%) occurred in WWTPs with ΔDOS > 0, implying that peptide-like DOS generated from microbes contributed to increased DOS in effluents. Specific microbe-DOS correlations (Spearman correlation, p < 0.05) indicated that increased effluent DOS might be explained by peptide-like DOS preferentially being produced during copiotrophic bacterial growth and accumulating due to less active cofactor metabolisms. Considering the potential environmental issues accompanying DOS discharge from WWTPs with ΔDOS > 0, our study highlights the importance of focusing on the transformation and control of DOS in the oxic process.


Assuntos
Águas Residuárias , Purificação da Água , Carbono , Enxofre , China , Eliminação de Resíduos Líquidos
14.
Environ Sci Technol ; 57(29): 10721-10732, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37433138

RESUMO

The widely used biofilm process in advanced wastewater treatment is currently challenged by numerous exotic emerging pollutants (EPs), and the underlying principle of the challenge is the adaptive evolution laws of biofilm under EP stress. However, there is still a knowledge gap in exploration of the biofilm adaptive evolution theory. Herein, we comprehensively analyzed the morphological variation, community succession, and assembly mechanism of biofilms to report the mechanism underlying their adaptive evolution under sulfamethoxazole and carbamazepine stress for the first time. The ecological role of the dominant species was driven as a pioneer and assembly hub by EP stress, and the deterministic processes indicated the functional basis of the transformation. In addition, the characteristic responses of dispersal limitation and homogenizing dispersal adequately revealed the assembly pathways in adaptive evolution and the resulting structural variation. Therefore, the "interfacial exposure-structural variation-mass transfer feedback" mechanism was inferred to underly the adaptive evolution process of biofilms. Overall, this study highlighted the internal drivers of the adaptive evolution of the biofilm at the phylogenetic level and deepened our understanding of the mechanism of biofilm development under EP stress in advanced wastewater purification.


Assuntos
Biofilmes , Filogenia
15.
Environ Sci Technol ; 57(46): 18236-18245, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37749748

RESUMO

The application of deep learning (DL) models for screening environmental estrogens (EEs) for the sound management of chemicals has garnered significant attention. However, the currently available DL model for screening EEs lacks both a transparent decision-making process and effective applicability domain (AD) characterization, making the reliability of its prediction results uncertain and limiting its practical applications. To address this issue, a graph neural network (GNN) model was developed to screen EEs, achieving accuracy rates of 88.9% and 92.5% on the internal and external test sets, respectively. The decision-making process of the GNN model was explored through the network-like similarity graphs (NSGs) based on the model features (FT). We discovered that the accuracy of the predictions is dependent on the feature distribution of compounds in NSGs. An AD characterization method called ADFT was proposed, which excludes predictions falling outside of the model's prediction range, leading to a 15% improvement in the F1 score of the GNN model. The GNN model with the AD method may serve as an efficient tool for screening EEs, identifying 800 potential EEs in the Inventory of Existing Chemical Substances of China. Additionally, this study offers new insights into comprehending the decision-making process of DL models.


Assuntos
Estrogênios , Redes Neurais de Computação , Reprodutibilidade dos Testes , China , Incerteza
16.
Environ Res ; 216(Pt 1): 114535, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36223835

RESUMO

The coexistence of chlorophenols (CPs) and total nitrogen (TN) is common in advanced purification of industrial secondary effluent, which brings challenges to conventional denitrification biofilters (DNBFs). Electrical stimulation is an effective method for the degradation of CPs, However, the application of electrical stimulation in DNBFs to enhance the treatment of secondary effluent containing CPs remains largely unknown. Herein, this study conducted a systematic investigation towards the effects of electrical stimulation on DNBF through eight lab-scale reactors at room and low temperatures and different hydraulic retention times (HRTs). Results showed that the electrical stimulation effect was not greatly affected by temperature and the optimal applied voltage was 3 V. Overall, the removal rates of TN and CPs were increased by 114%-334% and 2.68%-34.79% respectively after electrical stimulation. When the influent concentration of NO3--N, COD and each CP of 25 mg/L, 50 mg/L and 5 mg/L, about 15 mg/L of effluent TN could be achieved and the removals of p-chlorophenol, 2,4-dichlorophenol and 2,4,6-trichlorophenol were increased by 10.58%, 5.78% and 34.79% respectively, under the voltage of 3 V and HRT of 4 h. However, the reduction rate of biotoxicity was decreased and could not achieve low toxicity grade in general. Electrical stimulation promoted the elevation of Hydrogenophaga and thus enhanced the removal of TN, and the increase of Microbacterium and Ahniella was significantly associated with the improvement of CPs removal rate. In addition, the obvious accumulation of nitrite was found to be significantly negatively correlated with the abundance of Nitrospira. This study highlighted a further need for the optimization of electrical stimulation in DNBFs treating industrial secondary effluent containing CPs to achieve the goal of pollutant removal and toxicity reduction simultaneously.


Assuntos
Clorofenóis , Desnitrificação , Reatores Biológicos , Águas Residuárias , Nitrogênio , Estimulação Elétrica
17.
Environ Res ; 237(Pt 1): 116892, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37598848

RESUMO

Wastewater treatment plants (WWTPs) are the major sources of contaminants discharged into downstream water bodies. Profiling the contaminants in effluent of WWTPs is crucial to assess the potential eco-risks toward downstream organisms. To this end, this study investigated the contaminants in effluent of 10 WWTPs locating in 10 cities of Yangtze River delta region of China by suspected screening analysis. Further, the persistence, bioaccumulation, toxicity (PBT) and the characteristics sub-structures of PBT-like chemicals were analyzed. Totally, 704 chemicals including 155 chemical products, 31 food additives, 52 natural substances, 112 personal care products, 123 pesticides, 192 pharmaceuticals, 17 hormones and 22 others were found. The results of PBT analysis suggested that 42 chemicals (5.97% among the detected chemicals in WWTPs) were with PBT property. Among them, 31 contaminants were not reported previously. 9 characteristics sub-structures (N-methyleneisobutylamine, 1-naphthaldehyde, 2,3,3-trimethylcyclohexene, cyclohexanol, N-sec-butyl-n-propylamine, (5E)-2,6-dimethylocta-1,5-diene, 2-ethylphenol, pentadecane and 6-methoxyhexane) were found for PBT-like chemicals. The sub-structures of highly linear alkyl partially explained the significantly higher PBT score for personal care products. Present study provides fundamental information on PBT properties of contaminants in effluent of WWTPs, which will benefit to prioritize contaminants with high concerns in effluent of WWTPs.

18.
J Environ Manage ; 345: 118801, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37591099

RESUMO

Alkaline fermentation for volatile fatty acids (VFAs) production has shown potential as a viable approach to treat sewage sludge. The hydrolysis and acidogenesis of sludge are greatly influenced by mixing. However, the effects of mixing intensity on VFAs production in sludge alkaline fermentation (SAF) remain poorly understood. This study investigated the impacts of mixing intensity (30, 90 and 150 rpm continuous mixing, and 150 rpm intermittent mixing) on VFAs production, dissolved organic matter (DOM) characteristics, phospholipid fatty acid profiles and microbial population distribution in SAF. Results showed that 150 rpm continuous and intermittent mixing enhanced the hydrolysis of sludge, while 150 rpm intermittent mixing resulted in the highest VFAs production (3886 ± 266.1 mg COD/L). Analysis of fluorescent and molecular characteristics of DOM revealed that 150 rpm intermittent mixing facilitated the conversion of released DOM, especially proteins-like substances, into VFAs. The abundance of unsaturated and branched fatty acids of microbes increased under 150 rpm intermittent mixing, which could aid in DOM degradation and VFAs production. Firmicutes and Tissierella were enriched at 150 rpm intermittent mixing, which favored the maximum VFAs yield. Moreover, Firmicutes were found to be the key functional microorganisms influencing the yield of VFAs during SAF. This study provides an understanding about the mixing intensity effects on VFAs production during SAF, which could be helpful to improve the yield of VFAs.


Assuntos
Matéria Orgânica Dissolvida , Esgotos , Fermentação , Concentração de Íons de Hidrogênio , Ácidos Graxos Voláteis/metabolismo , Ácidos Graxos
19.
Int Heart J ; 64(6): 1010-1017, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37967977

RESUMO

This study aimed to investigate the relationship between blood urea nitrogen to albumin ratio (BAR) and the prognosis of heart failure (HF).A total of 2125 patients with HF were included in this single-center prospective cohort study between February 2012 and December 2017. Using a receiver operating characteristic curve, we determined the cutoff value of BAR as 0.24. All patients were divided into two groups according to the cutoff value of BAR.Among 2125 HF patients, the mean age was 56.7 ± 14.3. During a median follow-up time of 22 months, 516 end-point events occurred. Compared with patients in the low BAR group, those in the high BAR group were older; more likely to be male; had a higher percentage of hypertension, diabetes, smoking, and ß-blocker use; and higher levels of alanine aminotransferase, glycosylated hemoglobin, creatinine, log-transformed NTproBNP, and Blood urea nitrogen but lower levels of albumin, triglycerides, high-density lipoprotein, ApoA1, and hemoglobin. Prognosis analysis indicated that high BAR was associated with increased mortality risk of HF (Hazard Ratio = 1.497, 95% CI = 1.234-1.816; P < 0.001) in the multivariate Cox proportional hazard regression model. Subgroup analysis revealed that stratification by age, gender, history of hypertension, diabetes, smoking, ß-blocker use, and levels of hemoglobin, glycosylated hemoglobin, and creatinine have no obvious effect on the association between BAR ratio and the prognosis of HF. Furthermore, patients with high BAR represented a decreased left ventricular ejection fraction and increased left ventricular end-diastolic diameter.High BAR was an independent predictor for the mortality risk of HF.


Assuntos
Diabetes Mellitus , Insuficiência Cardíaca , Hipertensão , Humanos , Masculino , Adulto , Pessoa de Meia-Idade , Idoso , Feminino , Prognóstico , Volume Sistólico , Nitrogênio da Ureia Sanguínea , Estudos Prospectivos , Creatinina , Função Ventricular Esquerda , Albuminas , Hemoglobinas
20.
J Environ Sci (China) ; 125: 774-785, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36375959

RESUMO

In order to reveal the hotspots and trends of biological water treatment from the perspectives of scientific and technological innovation, both of the bibliometric review and patents analysis were performed in this study. The Web of Science Core Collection database and Derwent Innovation Index database recorded 30023 SCI papers and 50326 patents, respectively were analyzed via information visualization technology. The results showed that China ranked the first in both papers and patents, while the United States and Japan had advantages in papers and patents, respectively. It was concluded through literature metrology analysis that microbial population characteristics, biodegradation mechanism, toxicity analysis, nitrogen and phosphorus removal and biological treatment of micro-polluted wastewater were the research hotspots of SCI papers. Activated sludge process and anaerobic-aerobic combined process were the two mainstream technologies on the basis of patent technology classification analysis. Technology evolution path of biological water treatment was also elucidated in three stages based on the citation network analysis. Furthermore, the future directions including research on the law of interaction and regulation of biological phases and pollutants and the technology innovations towards the targeted biotransformation or selective biodegradation of pollutants and resource reuse of wastewater were prospected.


Assuntos
Poluentes Ambientais , Purificação da Água , Bibliometria , Esgotos , Estados Unidos , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa