Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(8): e2319364121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38359296

RESUMO

Clonal hematopoiesis (CH) represents the clonal expansion of hematopoietic stem cells and their progeny driven by somatic mutations. Accurate risk assessment of CH is critical for disease prevention and clinical decision-making. The size of CH has been showed to associate with higher disease risk, yet, factors influencing the size of CH are unknown. In addition, the characteristics of CH in long-lived individuals are not well documented. Here, we report an in-depth analysis of CH in longevous (≥90 y old) and common (60~89 y old) elderly groups. Utilizing targeted deep sequencing, we found that the development of CH is closely related to age and the expression of aging biomarkers. The longevous elderly group exhibited a significantly higher incidence of CH and significantly higher frequency of TET2 and ASXL1 mutations, suggesting that certain CH could be beneficial to prolong life. Intriguingly, the size of CH neither correlates significantly to age, in the range of 60 to 110 y old, nor to the expression of aging biomarkers. Instead, we identified a strong correlation between large CH size and the number of mutations per individual. These findings provide a risk assessment biomarker for CH and also suggest that the evolution of the CH is influenced by factor(s) in addition to age.


Assuntos
Hematopoiese Clonal , Hematopoese , Humanos , Idoso , Hematopoiese Clonal/genética , Hematopoese/genética , Envelhecimento/genética , Mutação , Biomarcadores
2.
Proc Natl Acad Sci U S A ; 121(10): e2319366121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38422020

RESUMO

Acute myeloid leukemia (AML) is an aging-related and heterogeneous hematopoietic malignancy. In this study, a total of 1,474 newly diagnosed AML patients with RNA sequencing data were enrolled, and targeted or whole exome sequencing data were obtained in 94% cases. The correlation of aging-related factors including age and clonal hematopoiesis (CH), gender, and genomic/transcriptomic profiles (gene fusions, genetic mutations, and gene expression networks or pathways) was systematically analyzed. Overall, AML patients aged 60 y and older showed an apparently dismal prognosis. Alongside age, the frequency of gene fusions defined in the World Health Organization classification decreased, while the positive rate of gene mutations, especially CH-related ones, increased. Additionally, the number of genetic mutations was higher in gene fusion-negative (GF-) patients than those with GF. Based on the status of CH- and myelodysplastic syndromes (MDS)-related mutations, three mutant subgroups were identified among the GF- AML cohort, namely, CH-AML, CH-MDS-AML, and other GF- AML. Notably, CH-MDS-AML demonstrated a predominance of elderly and male cases, cytopenia, and significantly adverse clinical outcomes. Besides, gene expression networks including HOXA/B, platelet factors, and inflammatory responses were most striking features associated with aging and poor prognosis in AML. Our work has thus unraveled the intricate regulatory circuitry of interactions among different age, gender, and molecular groups of AML.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Idoso , Humanos , Masculino , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Envelhecimento/genética , Mutação , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Prognóstico
3.
Cell Commun Signal ; 22(1): 98, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317235

RESUMO

NRAS mutations are most frequently observed in hematological malignancies and are also common in some solid tumors such as melanoma and colon cancer. Despite its pivotal role in oncogenesis, no effective therapies targeting NRAS has been developed. Targeting NRAS localization to the plasma membrane (PM) is a promising strategy for cancer therapy, as its signaling requires PM localization. However, the process governing NRAS translocation from the Golgi apparatus to the PM after lipid modification remains elusive. This study identifies GOLGA7 as a crucial factor controlling NRAS' PM translocation, demonstrating that its depletion blocks NRAS, but not HRAS, KRAS4A and KRAS4B, translocating to PM. GOLGA7 is known to stabilize the palmitoyltransferase ZDHHC9 for NRAS and HRAS palmitoylation, but we found that GOLGA7 depletion does not affect NRAS' palmitoylation level. Further studies show that loss of GOLGA7 disrupts NRAS anterograde trafficking, leading to its cis-Golgi accumulation. Remarkably, depleting GOLGA7 effectively inhibits cell proliferation in multiple NRAS-mutant cancer cell lines and attenuates NRASG12D-induced oncogenic transformation in vivo. These findings elucidate a specific intracellular trafficking route for NRAS under GOLGA7 regulation, highlighting GOLGA7 as a promising therapeutic target for NRAS-driven cancers.


Assuntos
Lipoilação , Transdução de Sinais , Membrana Celular/metabolismo , Linhagem Celular , Mutação , Complexo de Golgi/metabolismo
4.
Mol Cell ; 57(4): 662-673, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25601757

RESUMO

The TET2 DNA dioxygenase regulates cell identity and suppresses tumorigenesis by modulating DNA methylation and expression of a large number of genes. How TET2, like most other chromatin-modifying enzymes, is recruited to specific genomic sites is unknown. Here we report that WT1, a sequence-specific transcription factor, is mutated in a mutually exclusive manner with TET2, IDH1, and IDH2 in acute myeloid leukemia (AML). WT1 physically interacts with and recruits TET2 to its target genes to activate their expression. The interaction between WT1 and TET2 is disrupted by multiple AML-derived TET2 mutations. TET2 suppresses leukemia cell proliferation and colony formation in a manner dependent on WT1. These results provide a mechanism for targeting TET2 to a specific DNA sequence in the genome. Our results also provide an explanation for the mutual exclusivity of WT1 and TET2 mutations in AML, and suggest an IDH1/2-TET2-WT1 pathway in suppressing AML.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Leucemia Mieloide Aguda/genética , Proteínas Proto-Oncogênicas/fisiologia , Proteínas WT1/fisiologia , Proliferação de Células/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células HL-60 , Humanos , Proteína 2 Inibidora de Diferenciação/genética , Isocitrato Desidrogenase/genética , Leucemia Mieloide Aguda/patologia , Mutação , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas WT1/genética , Proteínas WT1/metabolismo
5.
J Biol Chem ; 295(52): 18343-18354, 2020 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-33122197

RESUMO

RAS genes are the most commonly mutated in human cancers and play critical roles in tumor initiation, progression, and drug resistance. Identification of targets that block RAS signaling is pivotal to develop therapies for RAS-related cancer. As RAS translocation to the plasma membrane (PM) is essential for its effective signal transduction, we devised a high-content screening assay to search for genes regulating KRAS membrane association. We found that the tyrosine phosphatase PTPN2 regulates the plasma membrane localization of KRAS. Knockdown of PTPN2 reduced the proliferation and promoted apoptosis in KRAS-dependent cancer cells, but not in KRAS-independent cells. Mechanistically, PTPN2 negatively regulates tyrosine phosphorylation of KRAS, which, in turn, affects the activation KRAS and its downstream signaling. Consistently, analysis of the TCGA database demonstrates that high expression of PTPN2 is significantly associated with poor prognosis of patients with KRAS-mutant pancreatic adenocarcinoma. These results indicate that PTPN2 is a key regulator of KRAS and may serve as a new target for therapy of KRAS-driven cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Mutação , Neoplasias/patologia , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Apoptose , Biomarcadores Tumorais/genética , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Células Tumorais Cultivadas
6.
BMC Genomics ; 22(1): 145, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33648458

RESUMO

BACKGROUND: Bi-specific T-cell engager (BiTE) antibody is a class of bispecific antibodies designed for cancer immunotherapy. Blinatumomab is the first approved BiTE to treat acute B cell lymphoblastic leukemia (B-ALL). It brings killer T and target B cells into close proximity, activating patient's autologous T cells to kill malignant B cells via mechanisms such as cytolytic immune synapse formation and inflammatory cytokine production. However, the activated T-cell subtypes and the target cell-dependent T cell responses induced by blinatumomab, as well as the mechanisms of resistance to blinatumomab therapy are largely unknown. RESULTS: In this study, we performed single-cell sequencing analysis to identify transcriptional changes in T cells following blinatumomab-induced T cell activation using single cells from both, a human cell line model and a patient-derived model of blinatumomab-mediated cytotoxicity. In total, the transcriptome of 17,920 single T cells from the cell line model and 2271 single T cells from patient samples were analyzed. We found that CD8+ effector memory T cells, CD4+ central memory T cells, naïve T cells, and regulatory T cells were activated after blinatumomab treatment. Here, blinatumomab-induced transcriptional changes reflected the functional immune activity of the blinatumomab-activated T cells, including the upregulation of pathways such as the immune system, glycolysis, IFNA signaling, gap junctions, and IFNG signaling. Co-stimulatory (TNFRSF4 and TNFRSF18) and co-inhibitory (LAG3) receptors were similarly upregulated in blinatumomab-activated T cells, indicating ligand-dependent T cell functions. Particularly, B-ALL cell expression of TNFSF4, which encodes the ligand of T cell co-stimulatory receptor TNFRSF4, was found positively correlated with the response to blinatumomab treatment. Furthermore, recombinant human TNFSF4 protein enhanced the cytotoxic activity of blinatumomab against B-ALL cells. CONCLUSION: These results reveal a target cell-dependent mechanism of T-cell activation by blinatumomab and suggest that TNFSF4 may be responsible for the resistant mechanism and a potential target for combination therapy with blinatumomab, to treat B-ALL or other B-cell malignancies.


Assuntos
Anticorpos Biespecíficos , Antineoplásicos , Ativação Linfocitária , Linfócitos T/efeitos dos fármacos , Anticorpos Biespecíficos/farmacologia , Antineoplásicos/farmacologia , Humanos , Ligante OX40 , Transcriptoma
7.
Proc Natl Acad Sci U S A ; 115(2): 373-378, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29279377

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is a clonal malignancy of immature T cells. Recently, the next-generation sequencing approach has allowed systematic identification of molecular features in pediatric T-ALL. Here, by performing RNA-sequencing and other genomewide analysis, we investigated the genomic landscape in 61 adult and 69 pediatric T-ALL cases. Thirty-six distinct gene fusion transcripts were identified, with SET-NUP214 being highly related to adult cases. Among 18 previously unknown fusions, ZBTB16-ABL1, TRA-SALL2, and involvement of NKX2-1 were recurrent events. ZBTB16-ABL1 functioned as a leukemogenic driver and responded to the effect of tyrosine kinase inhibitors. Among 48 genes with mutation rates >3%, 6 were newly found in T-ALL. An aberrantly overexpressed short mRNA transcript of the SLC17A9 gene was revealed in most cases with overexpressed TAL1, which predicted a poor prognosis in the adult group. Up-regulation of HOXA, MEF2C, and LYL1 was often present in adult cases, while TAL1 overexpression was detected mainly in the pediatric group. Although most gene fusions were mutually exclusive, they coexisted with gene mutations. These genetic abnormalities were correlated with deregulated gene expression markers in three subgroups. This study may further enrich the current knowledge of T-ALL molecular pathogenesis.


Assuntos
Regulação Leucêmica da Expressão Gênica , Proteínas de Fusão Oncogênica/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Transcriptoma , Adulto , Criança , Estudos de Coortes , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Células HEK293 , Humanos , Células Jurkat , Estimativa de Kaplan-Meier , Mutação
8.
Haematologica ; 105(4): 925-936, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31467124

RESUMO

Hematopoiesis is a finely regulated process in vertebrates under both homeostatic and stress conditions. By whole exome sequencing, we studied the genomics of acute lymphoblastic leukemia (ALL) patients who needed multiple red blood cell (RBC) transfusions after intensive chemotherapy treatment. ARHGEF12, encoding a RhoA guanine nucleotide exchange factor, was found to be associated with chemotherapy-induced anemia by genome-wide association study analyses. A single nucleotide polymorphism (SNP) of ARHGEF12 located in an intron predicted to be a GATA1 binding site, rs10892563, is significantly associated with patients who need RBC transfusion (P=3.469E-03, odds ratio 5.864). A luciferase reporter assay revealed that this SNP impairs GATA1-mediated trans-regulation of ARHGEF12, and quantitative polymerase chain reaction studies confirmed that the homozygotes status is associated with an approximately 61% reduction in ARHGEF12 expression (P=0.0088). Consequently, erythropoiesis was affected at the pro-erythroblast phases. The role of ARHGEF12 and its homologs in erythroid differentiation was confirmed in human K562 cells, mouse 32D cells and primary murine bone marrow cells. We further demonstrated in zebrafish by morpholino-mediated knockdown and CRISPR/Cas9-mediated knockout of arhgef12 that its reduction resulted in erythropoiesis defects. The p38 kinase pathway was affected by the ARHGEF12-RhoA signaling in K562 cells, and consistently, the Arhgef12-RhoA-p38 pathway was also shown to be important for erythroid differentiation in zebrafish as active RhoA or p38 readily rescued the impaired erythropoiesis caused by arhgef12 knockdown. Finally, ARHGEF12-mediated p38 activity also appeared to be involved in phenotypes of patients of the rs10892563 homozygous genotype. Our findings present a novel SNP of ARHGEF12 that may involve ARHGEF12-RhoA-p38 signaling in erythroid regeneration in ALL patients after chemotherapy.


Assuntos
Eritropoese , Leucemia-Linfoma Linfoblástico de Células Precursoras , Fatores de Troca de Nucleotídeo Guanina Rho , Animais , Diferenciação Celular , Eritropoese/genética , Estudo de Associação Genômica Ampla , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Peixe-Zebra
10.
BMC Cancer ; 19(1): 819, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31429724

RESUMO

BACKGROUND: Treatment of acute myeloid leukemia (AML) in elderly patients remains a great challenge. In this prospective single arm study (ChiCTR-OPC-15006492), we evaluated the efficacy and safety of a novel consolidation therapy with low-dose decitabine (LD-DAC) priming with intermediate-dose cytarabine (ID-Ara-C) followed by umbilical cord blood (UCB) infusion in elderly patients with AML. METHODS: A total of 25 patients with a median age of 64-years-old (60-74-years-old) who achieved complete remission (CR) after induction chemotherapy were enrolled in the study. RESULTS: The 2-year actual overall survival (OS) rate and leukemia-free survival (LFS) was 68.0 and 60.0%, respectively. The hematological and non-hematological toxicity were mild to moderate, and only one patient died in remission due to infection with possible acute graft versus host disease (aGVHD). Compared to a concurrent cohort of patients receiving conventional consolidation therapy, the study group tended to have an improved OS and LFS (p = 0.046 and 0.057, respectively), while the toxicity was comparable between the two groups. CONCLUSIONS: This study suggested the novel combination of LD-DAC, ID-Ara-C, and UCB infusion might be an optimal consolidation therapy for elderly patients with AML, and a prospective phase III randomized study is warranted to confirm this observation. TRIAL REGISTRATION: This single-arm phase II clinical trial in elderly AML patients was registered prospectively at www.chictr.org.cn (identifier: ChiCTR-OPC-15006492 ) on June 2, 2015.


Assuntos
Antimetabólitos Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Transfusão de Sangue/métodos , Quimioterapia de Consolidação/métodos , Citarabina/uso terapêutico , Decitabina/uso terapêutico , Sangue Fetal , Leucemia Mieloide Aguda/tratamento farmacológico , Idoso , Antimetabólitos Antineoplásicos/administração & dosagem , Citarabina/administração & dosagem , Decitabina/administração & dosagem , Intervalo Livre de Doença , Feminino , Seguimentos , Humanos , Leucemia Mieloide Aguda/mortalidade , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Taxa de Sobrevida
11.
BMC Cancer ; 19(1): 1072, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31703632

RESUMO

BACKGROUND: DNMT3A R882H, a frequent mutation in acute myeloid leukemia (AML), plays a critical role in malignant hematopoiesis. Recent findings suggest that DNMT3A mutant acts as a founder mutation and requires additional genetic events to induce full-blown AML. Here, we investigated the cooperation of mutant DNMT3A and NRAS in leukemogenesis by generating a double knock-in (DKI) mouse model harboring both Dnmt3a R878H and Nras G12D mutations. METHODS: DKI mice with both Dnmt3a R878H and Nras G12D mutations were generated by crossing Dnmt3a R878H knock-in (KI) mice and Nras G12D KI mice. Routine blood test, flow cytometry analysis and morphological analysis were performed to determine disease phenotype. RNA-sequencing (RNA-seq), RT-PCR and Western blot were carried out to reveal the molecular mechanism. RESULTS: The DKI mice developed a more aggressive AML with a significantly shortened lifespan and higher percentage of blast cells compared with KI mice expressing Dnmt3a or Nras mutation alone. RNA-seq analysis showed that Dnmt3a and Nras mutations collaboratively caused abnormal expression of a series of genes related to differentiation arrest and growth advantage. Myc transcription factor and its target genes related to proliferation and apoptosis were up-regulated, thus contributing to promote the process of leukemogenesis. CONCLUSION: This study showed that cooperation of DNMT3A mutation and NRAS mutation could promote the onset of AML by synergistically disturbing the transcriptional profiling with Myc pathway involvement in DKI mice.


Assuntos
Carcinogênese/genética , DNA (Citosina-5-)-Metiltransferases/genética , Técnicas de Introdução de Genes , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Proteínas Monoméricas de Ligação ao GTP/genética , Animais , Apoptose/genética , Diferenciação Celular/genética , DNA Metiltransferase 3A , Modelos Animais de Doenças , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Longevidade/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Fenótipo , Projetos Piloto , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA-Seq , Transcrição Gênica
12.
Proc Natl Acad Sci U S A ; 110(9): 3495-500, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23382200

RESUMO

The refractoriness of acute promyelocytic leukemia (APL) with t(11;17)(q23;q21) to all-trans retinoic acid (ATRA)-based therapy concerns clinicians and intrigues basic researchers. By using a murine leukemic model carrying both promyelocytic leukemia zinc finger/retinoic acid receptor-α (PLZF/RARα) and RARα/PLZF fusion genes, we discovered that 8-chlorophenylthio adenosine-3', 5'-cyclic monophosphate (8-CPT-cAMP) enhances cellular differentiation and improves gene trans-activation by ATRA in leukemic blasts. Mechanistically, in combination with ATRA, 8-CPT-cAMP activates PKA, causing phosphorylation of PLZF/RARα at Ser765 and resulting in increased dissociation of the silencing mediator for retinoic acid and thyroid hormone receptors/nuclear receptor corepressor from PLZF/RARα. This process results in changes of local chromatin and transcriptional reactivation of the retinoic acid pathway in leukemic cells. Meanwhile, 8-CPT-cAMP also potentiated ATRA-induced degradation of PLZF/RARα through its Ser765 phosphorylation. In vivo treatment of the t(11;17) APL mouse model demonstrated that 8-CPT-cAMP could significantly improve the therapeutic effect of ATRA by targeting a leukemia-initiating cell activity. This combined therapy, which induces enhanced differentiation and oncoprotein degradation, may benefit t(11;17) APL patients.


Assuntos
Diferenciação Celular , AMP Cíclico/análogos & derivados , Leucemia Promielocítica Aguda/tratamento farmacológico , Proteínas de Fusão Oncogênica/metabolismo , Proteólise , Tionucleotídeos/uso terapêutico , Translocação Genética , Tretinoína/uso terapêutico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Cromossomos Humanos Par 11/genética , Cromossomos Humanos Par 17/genética , AMP Cíclico/farmacologia , AMP Cíclico/uso terapêutico , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Humanos , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/patologia , Camundongos , Camundongos Endogâmicos C57BL , Correpressor 2 de Receptor Nuclear/metabolismo , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , Proteólise/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Análise de Sobrevida , Tionucleotídeos/farmacologia , Translocação Genética/efeitos dos fármacos , Tretinoína/farmacologia
13.
Dev Biol ; 392(2): 233-44, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24892953

RESUMO

As the primary driving forces of gastrulation, convergence and extension (C&E) movements lead to a medio-lateral narrowing and an anterior-posterior elongation of the embryonic body axis. Histone methylation as a post-translational modification plays a critical role in early embryonic development, but its functions in C&E movements remain largely unknown. Here, we show that the setdb2-dvr1 transcriptional cascade plays a critical role in C&E movements during zebrafish gastrulation. Knockdown of Setdb2, a SET domain-containing protein possessing a potential histone H3K9 methyltransferase activity, induced abnormal C&E movements, resulting in anterior-posterior shortening and medio-lateral expansion of the embryonic axis, as well as abnormal notochord cell polarity. Furthermore, we found that Setdb2 functions through fine-tuning the expression of dvr1, a ligand of the TGF-ß superfamily, to an appropriate level to ensure proper C&E movements in a non-cell-autonomous manner. In addition, both overexpression and knockdown of Dvr1 at the one-cell stage resulted in defects at epiboly and C&E. These data demonstrate that Setdb2 is a novel regulator for C&E movements and acts by modulating the expression level of dvr1, suggesting that Dvr1 acts as a direct and essential mediator for C&E cell movements.


Assuntos
Movimento Celular/fisiologia , Gastrulação/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Histona-Lisina N-Metiltransferase/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/embriologia , Animais , Western Blotting , Imunofluorescência , Técnicas de Silenciamento de Genes , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/metabolismo , Hibridização In Situ , Análise em Microsséries , Morfolinos/genética , Reação em Cadeia da Polimerase em Tempo Real , Fator de Crescimento Transformador beta/genética , Proteínas de Peixe-Zebra/genética
14.
J Biol Chem ; 288(19): 13551-62, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23539630

RESUMO

BACKGROUND: The role of cannabinoid receptor type 2 (Cnr2) in regulating immune function had been widely investigated, but the mechanism is not fully understood. RESULTS: Cnr2 activation down-regulates 5-lipoxygenase (Alox5) expression by suppressing the JNK/c-Jun activation. CONCLUSION: The Cnr2-JNK-Alox5 axis modulates leukocyte inflammatory migration. SIGNIFICANCE: Linking two important regulators in leukocyte inflammatory migration and providing a potential therapeutic strategy for treating human inflammation-associated diseases. Inflammatory migration of immune cells is involved in many human diseases. Identification of molecular pathways and modulators controlling inflammatory migration could lead to therapeutic strategies for treating human inflammation-associated diseases. The role of cannabinoid receptor type 2 (Cnr2) in regulating immune function had been widely investigated, but the mechanism is not fully understood. Through a chemical genetic screen using a zebrafish model for leukocyte migration, we found that both an agonist of the Cnr2 and inhibitor of the 5-lipoxygenase (Alox5, encoded by alox5) inhibit leukocyte migration in response to acute injury. These agents have a similar effect on migration of human myeloid cells. Consistent with these results, we found that inactivation of Cnr2 by zinc finger nuclease-mediated mutagenesis enhances leukocyte migration, while inactivation of Alox5 blocks leukocyte migration. Further investigation indicates that there is a signaling link between Cnr2 and Alox5 and that alox5 is a target of c-Jun. Cnr2 activation down-regulates alox5 expression by suppressing the JNK/c-Jun activation. These studies demonstrate that Cnr2, JNK, and Alox5 constitute a pathway regulating leukocyte migration. The cooperative effect between the Cnr2 agonist and Alox5 inhibitor also provides a potential therapeutic strategy for treating human inflammation-associated diseases.


Assuntos
Araquidonato 5-Lipoxigenase/metabolismo , Movimento Celular/efeitos dos fármacos , Leucócitos/fisiologia , Sistema de Sinalização das MAP Quinases , Receptor CB2 de Canabinoide/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Araquidonato 5-Lipoxigenase/genética , Sequência de Bases , Agonistas de Receptores de Canabinoides/farmacologia , Regulação Enzimológica da Expressão Gênica , Técnicas de Inativação de Genes , Indóis/farmacologia , Leucócitos/efeitos dos fármacos , Dados de Sequência Molecular , Ligação Proteica , Proteínas Proto-Oncogênicas c-jun/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/genética , Cauda , Imagem com Lapso de Tempo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
15.
Nat Rev Cancer ; 5(3): 172-83, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15719031

RESUMO

Imatinib, a potent inhibitor of the oncogenic tyrosine kinase BCR-ABL, has shown remarkable clinical activity in patients with chronic myelogenous leukaemia (CML). However, this drug does not completely eradicate BCR-ABL-expressing cells from the body, and resistance to imatinib emerges. Although BCR-ABL remains an attractive therapeutic target, it is important to identify other components involved in CML pathogenesis to overcome this resistance. What have clinical trials of imatinib and studies using mouse models for BCR-ABL leukaemogenesis taught us about the functions of BCR-ABL beyond its kinase activity, and how these functions contribute to CML pathogenesis?


Assuntos
Genes abl , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/fisiopatologia , Animais , Antineoplásicos/farmacologia , Benzamidas , Transformação Celular Neoplásica , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Humanos , Mesilato de Imatinib , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Camundongos , Proteínas Oncogênicas v-abl/farmacologia , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-abl/farmacologia , Pirimidinas/farmacologia
16.
Proc Natl Acad Sci U S A ; 108(6): 2450-5, 2011 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-21262832

RESUMO

The full-length AML1-ETO (AE) fusion gene resulting from t(8;21)(q22;q22) in human acute myeloid leukemia (AML) is not sufficient to induce leukemia in animals, suggesting that additional mutations are required for leukemogenesis. We and others have identified activating mutations of C-KIT in nearly half of patients with t(8;21) AML. To test the hypothesis that activating C-KIT mutations cooperate with AE to cause overt AML, we generated a murine transduction and transplantation model with both mutated C-KIT and AE. To overcome the intracellular transport block of human C-KIT in murine cells, we engineered hybrid C-KIT (HyC-KIT) by fusing the extracellular and transmembrane domains of the murine c-Kit in-frame to the intracellular signaling domain of human C-KIT. We showed that tyrosine kinase domain mutants HyC-KIT N822K and D816V, as well as juxtamembrane mutants HyC-KIT 571+14 and 557-558Del, could transform murine 32D cells to cytokine-independent growth. The protein tyrosine kinase inhibitor dasatinib inhibited the proliferation of 32D cells expressing these C-KIT mutants, with potency in the low nanomolar range. In mice, HyC-KIT N822K induced a myeloproliferative disease, whereas HyC-KIT 571+14 induces both myeloproliferative disease and lymphocytic leukemia. Interestingly, coexpression of AE and HyC-KIT N822K led to fatal AML. Our data have further enriched the two-hit model that abnormalities of both transcription factor and membrane/cytosolic signaling molecule are required in AML pathogenesis. Furthermore, dasatinib prolonged lifespan of mice bearing AE and HyC-KIT N822K-coexpressing leukemic cells and exerted synergic effects while combined with cytarabine, thus providing a potential therapeutic for t(8;21) leukemia.


Assuntos
Transformação Celular Neoplásica , Subunidade alfa 2 de Fator de Ligação ao Core , Leucemia Mieloide Aguda , Mutação , Proteínas de Fusão Oncogênica , Proteínas Proto-Oncogênicas c-kit , Animais , Antimetabólitos Antineoplásicos/farmacologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Cromossomos Humanos Par 21/genética , Cromossomos Humanos Par 21/metabolismo , Cromossomos Humanos Par 8/genética , Cromossomos Humanos Par 8/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Citarabina/farmacologia , Humanos , Leucemia Linfoide/genética , Leucemia Linfoide/metabolismo , Leucemia Linfoide/patologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Transgênicos , Células NIH 3T3 , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Proteína 1 Parceira de Translocação de RUNX1 , Translocação Genética/genética
17.
J Exp Clin Cancer Res ; 43(1): 51, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373953

RESUMO

BACKGROUNDS: Immune checkpoint blockade (ICB) is widely considered to exert long-term treatment benefits by activating antitumor immunity. However, many cancer patients show poor clinical responses to ICB due in part to the lack of an immunogenic niche. Focal adhesion kinase (FAK) is frequently amplified and acts as an immune modulator across cancer types. However, evidence illustrates that targeting FAK is most effective in combination therapy rather than in monotherapy. METHODS: Here, we used drug screening, in vitro and in vivo assays to filter out that doxorubicin and its liposomal form pegylated liposome doxorubicin (PLD) showed synergistic anti-tumor effects in combination with FAK inhibitor IN10018. We hypothesized that anti-tumor immunity and immunogenic cell death (ICD) may be involved in the treatment outcomes through the data analysis of our clinical trial testing the combination of IN10018 and PLD. We then performed cell-based assays and animal studies to detect whether FAK inhibition by IN10018 can boost the ICD of PLD/doxorubicin and further established syngeneic models to test the antitumor effect of triplet combination of PLD, IN10018, and ICB. RESULTS: We demonstrated that the combination of FAK inhibitor IN10018, and PLD/doxorubicin exerted effective antitumor activity. Notably, the doublet combination regimen exhibited response latency and long-lasting treatment effects clinically, outcomes frequently observed in immunotherapy. Our preclinical study confirmed that the 2-drug combination can maximize the ICD of cancer cells. This approach primed the tumor microenvironment, supplementing it with sufficient tumor-infiltrating lymphocytes (TILs) to activate antitumor immunity. Finally, different animal studies confirmed that the antitumor effects of ICB can be significantly enhanced by this doublet regimen. CONCLUSIONS: We confirmed that targeting FAK by IN10018 can enhance the ICD of PLD/doxorubicin, further benefiting the anti-tumor effect of ICB. The animal tests of the triplet regimen warrant further discovery in the real world.


Assuntos
Lipossomos , Neoplasias , Animais , Humanos , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Proteína-Tirosina Quinases de Adesão Focal/efeitos dos fármacos , Inibidores de Checkpoint Imunológico/uso terapêutico , Morte Celular Imunogênica , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Polietilenoglicóis , Microambiente Tumoral
18.
J Biol Chem ; 287(3): 1770-8, 2012 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-22110133

RESUMO

Interferon regulatory factor 4 (IRF-4) is essential for B and T cell development and immune response regulation, and has both nuclear and cytoplasmic functions. IRF-4 was originally identified as a proto-oncogene resulting from a t(6;14) chromosomal translocation in multiple myeloma and its expression was shown to be essential for multiple myeloma cell survival. However, we have previously shown that IRF-4 functions as a tumor suppressor in the myeloid lineage and in early stages of B cell development. In this study, we found that IRF-4 suppresses BCR/ABL transformation of myeloid cells. To gain insight into the molecular pathways that mediate IRF-4 tumor suppressor function, we performed a structure-function analysis of IRF-4 as a suppressor of BCR/ABL transformation. We found that the DNA binding domain deletion mutant of IRF-4, which is localized only in the cytoplasm, is still able to inhibit BCR/ABL transformation of myeloid cells. IRF-4 also functions as a tumor suppressor in bone marrow cells deficient in MyD88, an IRF-4-interacting protein found in the cytoplasm. However, IRF-4 tumor suppressor activity is lost in IRF association domain (IAD) deletion mutants. These results demonstrate that IRF-4 suppresses BCR/ABL transformation by a novel cytoplasmic function involving its IAD domain.


Assuntos
Transformação Celular Neoplásica/metabolismo , Proteínas de Fusão bcr-abl/metabolismo , Fatores Reguladores de Interferon/metabolismo , Células Mieloides/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Sequência de Aminoácidos , Animais , Transformação Celular Neoplásica/genética , DNA/genética , DNA/metabolismo , Proteínas de Fusão bcr-abl/genética , Fatores Reguladores de Interferon/genética , Camundongos , Camundongos Knockout , Células Mieloides/patologia , Estrutura Terciária de Proteína , Deleção de Sequência , Proteínas Supressoras de Tumor/genética
19.
Cell Death Discov ; 9(1): 453, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38086802

RESUMO

MP-HJ-1b is a novel microtubule inhibitor that we designed and reported previously. Ferroptosis is a newly identified type of nonapoptotic cell death induced by ferrous catalysis and lipid peroxidation. Here, transcriptomics, proteomics, and molecular docking analyses were combined to explore the novel effects of MP-HJ-1b on tumors. Both omics analyses suggested that MP-HJ-1b affects ribosomes, and we confirmed that it inhibits the ribosomal component proteins RPL35 and MRPL28. Colchicine was used as an analog, and the results showed that MP-HJ-1b and colchicine increased reactive oxygen species and malondialdehyde levels and decreased reduced glutathione levels, suggesting that they promoted ferroptosis in HeLa cells. Specifically, MP-HJ-1b downregulated SLC7A11 and GPX4 to enhance the classical pathway of ferroptosis, while colchicine upregulated LC3A/B-II and enhanced autophagy. Clinically, the serum concentrations of ferrous ions, reduced glutathione, and Hcy were higher in cervical cancer patients than in healthy individuals. ALT, AST, Cho, HDL-C, and LDL-C levels were decreased in the serum of patients. Our study expands understanding of the way MP-HJ-1b promotes cell death and enriches research on microtubule inhibitors in the ferroptosis field.

20.
Int J Biol Sci ; 19(9): 2711-2724, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324948

RESUMO

CDH1 deficiency is common in diffuse gastric cancer and triple negative breast cancer patients, both of which still lack effective therapeutics. ROS1 inhibition results in synthetic lethality in CDH1-deficient cancers, but often leads to adaptive resistance. Here, we demonstrate that upregulation of the FAK activity accompanies the emergence of resistance to ROS1 inhibitor therapy in gastric and breast CDH1-deficient cancers. FAK inhibition, either by FAK inhibitors or by knocking down its expression, resulted in higher cytotoxicity potency of the ROS1 inhibitor in CDH1-deficient cancer cell lines. Co-treatment of mice with the FAK inhibitor and ROS1 inhibitors also showed synergistic effects against CDH1-deficient cancers. Mechanistically, ROS1 inhibitors induce the FAK-YAP-TRX signaling, decreasing oxidative stress-related DNA damage and consequently reducing their anti-cancer effects. The FAK inhibitor suppresses the aberrant FAK-YAP-TRX signaling, reinforcing ROS1 inhibitor's cytotoxicity towards cancer cells. These findings support the use of FAK and ROS1 inhibitors as a combination therapeutic strategy in CDH1-deficient triple negative breast cancer and diffuse gastric cancer patients.


Assuntos
Neoplasias Gástricas , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas/metabolismo , Antígenos CD , Caderinas/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa