Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Nature ; 468(7323): 553-6, 2010 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-20981010

RESUMO

Biodiversity is rapidly declining, and this may negatively affect ecosystem processes, including economically important ecosystem services. Previous studies have shown that biodiversity has positive effects on organisms and processes across trophic levels. However, only a few studies have so far incorporated an explicit food-web perspective. In an eight-year biodiversity experiment, we studied an unprecedented range of above- and below-ground organisms and multitrophic interactions. A multitrophic data set originating from a single long-term experiment allows mechanistic insights that would not be gained from meta-analysis of different experiments. Here we show that plant diversity effects dampen with increasing trophic level and degree of omnivory. This was true both for abundance and species richness of organisms. Furthermore, we present comprehensive above-ground/below-ground biodiversity food webs. Both above ground and below ground, herbivores responded more strongly to changes in plant diversity than did carnivores or omnivores. Density and richness of carnivorous taxa was independent of vegetation structure. Below-ground responses to plant diversity were consistently weaker than above-ground responses. Responses to increasing plant diversity were generally positive, but were negative for biological invasion, pathogen infestation and hyperparasitism. Our results suggest that plant diversity has strong bottom-up effects on multitrophic interaction networks, with particularly strong effects on lower trophic levels. Effects on higher trophic levels are indirectly mediated through bottom-up trophic cascades.


Assuntos
Biodiversidade , Modelos Biológicos , Fenômenos Fisiológicos Vegetais , Animais , Densidade Demográfica
2.
Ecology ; 94(8): 1878-85, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24015531

RESUMO

Recent studies assessing the role of biological diversity for ecosystem functioning indicate that the diversity of functional traits and the evolutionary history of species in a community, not the number of taxonomic units, ultimately drives the biodiversity--ecosystem-function relationship. Here, we simultaneously assessed the importance of plant functional trait and phylogenetic diversity as predictors of major trophic groups of soil biota (abundance and diversity), six years from the onset of a grassland biodiversity experiment. Plant functional and phylogenetic diversity were generally better predictors of soil biota than the traditionally used species or functional group richness. Functional diversity was a reliable predictor for most biota, with the exception of soil microorganisms, which were better predicted by phylogenetic diversity. These results provide empirical support for the idea that the diversity of plant functional traits and the diversity of evolutionary lineages in a community are important for maintaining higher abundances and diversity of soil communities.


Assuntos
Biodiversidade , Modelos Biológicos , Filogenia , Plantas/classificação , Plantas/genética , Solo , Animais
3.
Oecologia ; 170(4): 1021-32, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22678109

RESUMO

Decomposers and arbuscular mycorrhizal fungi (AMF) both determine plant nutrition; however, little is known about their interactive effects on plant communities. We set up a greenhouse experiment to study effects of plant competition (one- and two-species treatments), Collembola (Heteromurus nitidus and Protaphorura armata), and AMF (Glomus intraradices) on the performance (above- and belowground productivity and nutrient uptake) of three grassland plant species (Lolium perenne, Trifolium pratense, and Plantago lanceolata) belonging to three dominant plant functional groups (grasses, legumes, and herbs). Generally, L. perenne benefited from being released from intraspecific competition in the presence of T. pratense and P. lanceolata. However, the presence of AMF increased the competitive strength of P. lanceolata and T. pratense against L. perenne and also modified the effects of Collembola on plant productivity. The colonization of roots by AMF was reduced in treatments with two plant species suggesting that plant infection by AMF was modified by interspecific plant interactions. Collembola did not affect total colonization of roots by AMF, but increased the number of mycorrhizal vesicles in P. lanceolata. AMF and Collembola both enhanced the amount of N and P in plant shoot tissue, but impacts of Collembola were less pronounced in the presence of AMF. Overall, the results suggest that, by differentially affecting the nutrient acquisition and performance of plant species, AMF and Collembola interactively modify plant competition and shape the composition of grassland plant communities. The results suggest that mechanisms shaping plant community composition can only be understood when complex belowground interactions are considered.


Assuntos
Lolium/crescimento & desenvolvimento , Plantago/crescimento & desenvolvimento , Trifolium/crescimento & desenvolvimento , Animais , Biomassa , Ecossistema , Alimentos , Insetos , Micorrizas/crescimento & desenvolvimento , Dinâmica Populacional
4.
BMC Ecol Evol ; 21(1): 15, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33522894

RESUMO

BACKGROUND: How land use shapes biodiversity and functional trait composition of animal communities is an important question and frequently addressed. Land-use intensification is associated with changes in abiotic and biotic conditions including environmental homogenization and may act as an environmental filter to shape the composition of species communities. Here, we investigated the responses of land snail assemblages to land-use intensity and abiotic soil conditions (pH, soil moisture), and analyzed their trait composition (shell size, number of offspring, light preference, humidity preference, inundation tolerance, and drought resistance). We characterized the species' responses to land use to identify 'winners' (species that were more common on sites with high land-use intensity than expected) or 'losers' of land-use intensity (more common on plots with low land-use intensity) and their niche breadth. As a proxy for the environmental 'niche breadth' of each snail species, based on the conditions of the sites in which it occurred, we defined a 5-dimensional niche hypervolume. We then tested whether land-use responses and niches contribute to the species' potential vulnerability suggested by the Red List status. RESULTS: Our results confirmed that the trait composition of snail communities was significantly altered by land-use intensity and abiotic conditions in both forests and grasslands. While only 4% of the species that occurred in forests were significant losers of intensive forest management, the proportion of losers in grasslands was much higher (21%). However, the species' response to land-use intensity and soil conditions was largely independent of specific traits and the species' Red List status (vulnerability). Instead, vulnerability was only mirrored in the species' rarity and its niche hypervolume: threatened species were characterized by low occurrence in forests and low occurrence and abundance in grasslands and by a narrow niche quantified by land-use components and abiotic factors. CONCLUSION: Land use and environmental responses of land snails were poorly predicted by specific traits or the species' vulnerability, suggesting that it is important to consider complementary risks and multiple niche dimensions.


Assuntos
Florestas , Pradaria , Animais , Biodiversidade , Alimentos , Solo
5.
Appl Environ Microbiol ; 76(12): 3765-75, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20418424

RESUMO

Large-scale (temporal and/or spatial) molecular investigations of the diversity and distribution of arbuscular mycorrhizal fungi (AMF) require considerable sampling efforts and high-throughput analysis. To facilitate such efforts, we have developed a TaqMan real-time PCR assay to detect and identify AMF in environmental samples. First, we screened the diversity in clone libraries, generated by nested PCR, of the nuclear ribosomal DNA internal transcribed spacer (ITS) of AMF in environmental samples. We then generated probes and forward primers based on the detected sequences, enabling AMF sequence type-specific detection in TaqMan multiplex real-time PCR assays. In comparisons to conventional clone library screening and Sanger sequencing, the TaqMan assay approach provided similar accuracy but higher sensitivity with cost and time savings. The TaqMan assays were applied to analyze the AMF community composition within plots of a large-scale plant biodiversity manipulation experiment, the Jena Experiment, primarily designed to investigate the interactive effects of plant biodiversity on element cycling and trophic interactions. The results show that environmental variables hierarchically shape AMF communities and that the sequence type spectrum is strongly affected by previous land use and disturbance, which appears to favor disturbance-tolerant members of the genus Glomus. The AMF species richness of disturbance-associated communities can be largely explained by richness of plant species and plant functional groups, while plant productivity and soil parameters appear to have only weak effects on the AMF community.


Assuntos
Biodiversidade , Ecossistema , Micorrizas/classificação , Micorrizas/crescimento & desenvolvimento , Plantas/microbiologia , Reação em Cadeia da Polimerase/métodos , Solo/análise , DNA Fúngico/química , DNA Fúngico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Dados de Sequência Molecular , Micorrizas/genética , Filogenia , Análise de Sequência de DNA
6.
Ecology ; 91(4): 1083-91, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20462122

RESUMO

Theory predicts negative effects of increasing plant diversity on the abundance of specialist insect herbivores, but little is known about how plant diversity affects the performance and abundance of generalist insect herbivores. We studied oviposition rates and offspring numbers in females of the generalist grasshopper Chorthippus parallelus that were collected in 15 montane grasslands in 2005 and 2007 along a gradient of plant species richness in central Germany. In addition to plant species richness, we determined evenness and plant community composition in the grasslands and measured aboveground plant biomass and other habitat variables such as leaf area index, vegetation height, and solar radiation. There was substantial variation among sites in grasshopper fecundity and the number of nymphs that hatched from the egg pods. Both fitness measures were positively influenced by plant species richness at the sites, while female fitness did not correlate with any of the other habitat parameters. Abundance of C. parallelus in the grasslands was positively correlated with plant species richness, plant community composition, and incident solar radiation of the sites. There were no phenological differences between grasshoppers from the different study sites. Our results suggest that decreasing biodiversity threatens the persistence not only of specialist, but also of generalist insect herbivores via a variety of mechanisms including a decrease in diversity of the generalists' food plants.


Assuntos
Ecossistema , Gafanhotos/fisiologia , Plantas/classificação , Animais , Tamanho Corporal , Comportamento Alimentar/fisiologia , Feminino , Densidade Demográfica , Reprodução , Fatores de Tempo
7.
Oecologia ; 160(2): 267-77, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19219458

RESUMO

The majority of plants are involved in symbioses with arbuscular mycorrhizal fungi (AMF), and these associations are known to have a strong influence on the performance of both plants and insect herbivores. Little is known about the impact of AMF on complex trophic chains, although such effects are conceivable. In a greenhouse study we examined the effects of two AMF species, Glomus intraradices and G. mosseae on trophic interactions between the grass Phleum pratense, the aphid Rhopalosiphum padi, and the parasitic wasp Aphidius rhopalosiphi. Inoculation with AMF in our study system generally enhanced plant biomass (+5.2%) and decreased aphid population growth (-47%), but there were no fungal species-specific effects. When plants were infested with G. intraradices, the rate of parasitism in aphids increased by 140% relative to the G. mosseae and control treatment. When plants were associated with AMF, the developmental time of the parasitoids decreased by 4.3% and weight at eclosion increased by 23.8%. There were no clear effects of AMF on the concentration of nitrogen and phosphorus in plant foliage. Our study demonstrates that the effects of AMF go beyond a simple amelioration of the plants' nutritional status and involve rather more complex species-specific cascading effects of AMF in the food chain that have a strong impact not only on the performance of plants but also on higher trophic levels, such as herbivores and parasitoids.


Assuntos
Afídeos/fisiologia , Cadeia Alimentar , Micorrizas/fisiologia , Phleum/crescimento & desenvolvimento , Simbiose , Vespas/fisiologia , Análise de Variância , Animais , Afídeos/parasitologia , Biomassa , Alemanha , Nitrogênio/análise , Phleum/química , Phleum/microbiologia , Fósforo/análise , Dinâmica Populacional
8.
Ecology ; 87(5): 1244-55, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16761603

RESUMO

The relationship between plant diversity and productivity has largely been attributed to niche complementarity, assuming that plant species are complementary in their resource use. In this context, we conducted an 15N field study in three different grasslands, testing complementarity nitrogen (N) uptake patterns in terms of space, time, and chemical form as well as N strategies such as soil N use, symbiotic N fixation, or internal N recycling for different plant species. The relative contribution of different spatial, temporal, and chemical soil N pools to total soil N uptake of plants varied significantly among the investigated plant species, within and across functional groups. This suggests that plants occupy distinct niches with respect to their relative N uptake. However, when the absolute N uptake from the different soil N pools was analyzed, no spatial, temporal, or chemical variability was detected, but plants, and in particular functional groups, differed significantly with respect to their total soil N uptake irrespective of treatment. Consequently, our data suggest that absolute N exploitation on the ecosystem level is determined by species or functional group identity and thus by community composition rather than by complementary biodiversity effects. Across functional groups, total N uptake from the soil was negatively correlated with leaf N concentrations, suggesting that these functional groups follow different N use strategies to meet their N demands. While our findings give no evidence for a biodiversity effect on the quantitative exploitation of different soil N pools, there is evidence for different and complementary N strategies and thus a potentially beneficial effect of functional group diversity on ecosystem functioning.


Assuntos
Biodiversidade , Meio Ambiente , Nitrogênio/metabolismo , Plantas/metabolismo , Ecossistema , Nitrogênio/fisiologia , Isótopos de Nitrogênio , Desenvolvimento Vegetal , Fenômenos Fisiológicos Vegetais , Dinâmica Populacional , Solo/análise , Especificidade da Espécie
9.
Oecologia ; 159(1): 191-205, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18975009

RESUMO

Plant communities can be affected both by arbuscular mycorrhizal fungi (AMF) and hemiparasitic plants. However, little is known about the interactive effects of these two biotic factors on the productivity and diversity of plant communities. To address this question, we set up a greenhouse study in which different AMF inocula and a hemiparasitic plant (Rhinanthus minor) were added to experimental grassland communities in a fully factorial design. In addition, single plants of each species in the grassland community were grown with the same treatments to distinguish direct AMF effects from indirect effects via plant competition. We found that AMF changed plant community structure by influencing the plant species differently. At the community level, AMF decreased the productivity by 15-24%, depending on the particular AMF treatment, mainly because two dominant species, Holcus lanatus and Plantago lanceolata, showed a negative mycorrhizal dependency. Concomitantly, plant diversity increased due to AMF inoculation and was highest in the treatment with a combination of two commercial AM strains. AMF had a positive effect on growth of the hemiparasite, and thereby induced a negative impact of the hemiparasite on host plant biomass which was not found in non-inoculated communities. However, the hemiparasite did not increase plant diversity. Our results highlight the importance of interactions with soil microbes for plant community structure and that these indirect effects can vary among AMF treatments. We conclude that mutualistic interactions with AMF, but not antagonistic interactions with a root hemiparasite, promote plant diversity in this grassland community.


Assuntos
Micorrizas/fisiologia , Raízes de Plantas/parasitologia , Plantas/microbiologia , Plantas/parasitologia , Ecossistema , Interações Hospedeiro-Parasita
10.
Environ Microbiol ; 9(8): 1930-8, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17635540

RESUMO

Most studies on the species composition of arbuscular mycorrhizal fungi (AMF) have solely analysed mycorrhizal roots or AM spores collected from soil samples. However, the spore production rate and proportions of AMF mycelium in roots and soils have all been shown to vary substantially in a taxon-specific manner. Therefore, in the study presented here we used a molecular approach to analyse the species composition of AMF in spores, intra-radical and extra-radical mycelium in an intensively farmed meadow in central Germany. By polymerase chain reaction and sequencing of the ITS region members of seven different families and species groups within Glomeromycota were identified. The data revealed remarkable differences in the composition of AMF taxa both between the spores and the mycelia, and between the two types of mycelia. Glomus group Ab was dominant in roots and spores, in accordance with previous research. However, members of this group were rarely detected as extra-radical mycelium, in which Paraglomeraceae were dominant, although we found no evidence for the presence of Paraglomeraceae in roots or spores, even when a specific primer set was used. These results may be interpreted as a further indication that AMF are not necessarily obligate symbionts of plants.


Assuntos
Ecossistema , Fungos/genética , Micorrizas/classificação , Raízes de Plantas/microbiologia , Microbiologia do Solo , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Micorrizas/genética , RNA Ribossômico 5,8S/genética
11.
Mycol Res ; 110(Pt 5): 555-66, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16769509

RESUMO

Two new ectocarpic arbuscular mycorrhizal fungal species, Glomus drummondii and G. walkeri (Glomeromycota), found in maritime sand dunes of northern Poland and those adjacent to the Mediterranean Sea are described and illustrated. Mature spores of G. drummondii are pastel yellow to maize yellow, globose to subglobose, (58-)71(-85) micromdiam, or ovoid, 50-80x63-98 microm. Their wall consists of three layers: an evanescent, hyaline, short-lived outermost layer, a laminate, smooth, pastel yellow to maize yellow middle layer, and a flexible, smooth, hyaline innermost layer. Spores of G. walkeri are white to pale yellow, globose to subglobose, (55-)81(-95) micromdiam, or ovoid, 60-90x75-115 microm, and have a spore wall composed of three layers: a semi-permanent, hyaline outermost layer, a laminate, smooth, white to pale yellow middle layer, and a flexible, smooth, hyaline innermost layer. In Melzer's reagent, only the inner- and outermost layers stain reddish white to greyish rose in G. drummondii and G. walkeri, respectively. Both species form vesicular-arbuscular mycorrhizae in one-species cultures with Plantago lanceolata as the host plant. Phylogenetic analyses of the ITS and parts of the LSU of the nrDNA of spores placed both species in Glomus Group B sensu Schüssler et al. [Schüssler A, Schwarzott D, Walker C, 2001. A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycolological Research 105: 1413-1421.].


Assuntos
Micorrizas/classificação , Micorrizas/citologia , Filogenia , Esporos Fúngicos/citologia
12.
Mycol Res ; 110(Pt 4): 369-80, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16546367

RESUMO

In order to widen the scope of existing phylogenies of the ectomycorrhizal agaric genus Hebeloma a total of 53 new rDNA ITS sequences from that genus was generated, augmented by sequences retrieved from GenBank, and analysed using Bayesian, strict consensus and neighbour joining methods. The lignicolous Hebelomina neerlandica, Gymnopilus penetrans, and two species of Galerina served as outgroup taxa. Anamika indica, as well as representatives of the genera Hymenogaster and Naucoria, were included to test the monophyly of Hebeloma, which is confirmed by the results. Hebeloma, Naucoria, Hymenogaster and Anamika indica cluster in a strongly supported monophyletic hebelomatoid clade. All trees largely reflect the current infrageneric classification within Hebeloma, and divide the genus into mostly well-supported monophyletic groups surrounding H. crustuliniforme, H. velutipes, H. sacchariolens, H. sinapizans, and H. radicosum, with H. sarcophyllum being shown at an independent position; however this is not well supported. The section Indusiata divides with strong support into three groups, the position of the pleurocystidiate Hebeloma cistophilum suggests the possible existence of a third subsection within sect. Indusiata. Subsection Sacchariolentia is raised to the rank of section.


Assuntos
Agaricales/genética , Sequência de Bases , Clonagem Molecular , DNA Fúngico/química , DNA Fúngico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Europa (Continente) , Evolução Molecular , Filogenia , Reação em Cadeia da Polimerase , Alinhamento de Sequência , Análise de Sequência de DNA
13.
Mycorrhiza ; 16(1): 67-72, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16133254

RESUMO

The coexistence of a large number of soil animals without extensive niche differentiation is one of the great riddles in soil biology. The main aim of this study was to explore the importance of partitioning of food resources for the high diversity of micro-arthropods in soil. In addition, we investigated if ectomycorrhizal fungi are preferentially consumed compared to saprotrophic fungi. Until today, ectomycorrhizal fungi have never been tested as potential food resource for oribatid mites. We offered six ectomycorrhizal fungi [Amanita muscaria (L.) Hook., Boletus badius (Fr.) Fr., Cenococcum geophilum Fr., Laccaria laccata (Scop.) Fr., Paxillus involutus (Batsch) Fr. and Piloderma croceum J. Erikss. & Hjortstam], one ericoid mycorrhizal fungus [Hymenoscyphus ericae (D.J. Read) Korf & Kernan] and three saprotrophic fungi [Agrocybe gibberosa (Fr.) Fayod, Alternaria alternata (Fr.) Keissl. and Mortierella ramanniana (A. Møller) Linnem.] simultaneously to each of the mainly mycophagous oribatid mite species Carabodes femoralis (Nicolet), Nothrus silvestris Nicolet and Oribatula tibialis Nicolet. The ericoid mycorrhizal fungus H. ericae and the ectomycorrhizal fungus B. badius were preferentially consumed by each oribatid mite species. However, feeding preferences differed significantly between the three species, with O. tibialis being most selective. This study for the first time documented that oribatid mites feed on certain ectomycorrhizal fungi.


Assuntos
Ácaros e Carrapatos/fisiologia , Fungos , Micorrizas , Animais , Comportamento Alimentar
14.
New Phytol ; 166(3): 981-92, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15869657

RESUMO

Root colonization by arbuscular mycorrhizal fungi (AMF) was investigated in industrially polluted grassland characterized by exceptionally high phosphorus levels (up to 120 g kg(-1) soil). Along a pollution-induced nitrogen gradient, soil and tissue element concentrations of Artemisia vulgaris plants and their mycorrhizal status were determined. Additionally, we compared mycorrhization rates and above-ground biomass of A. vulgaris at N-fertilized and control plots in the N-poor area. Despite high soil and tissue P concentrations, plants from N-deficient plots, which were characterized by low tissue N concentrations and N : P ratios, were strongly colonized by AMF, whereas at a plot with comparable P levels, but higher soil and plant N concentrations and N : P ratios, mycorrhization rates were significantly lower. Correlation analyses revealed a negative relationship between percentage root colonization of A. vulgaris by AMF and both tissue N concentration and N : P ratio. Accordingly, in the fertilization experiment, control plants had higher mycorrhization rates than N-fertilized plants, whereas the species attained higher biomass at N-fertilized plots. The results suggest that N deficiency stimulates root colonization by AMF in this extraordinarily P-rich field site.


Assuntos
Artemisia/metabolismo , Artemisia/microbiologia , Micorrizas/metabolismo , Nitrogênio/metabolismo , Fosfatos/análise , Solo/análise , Fertilizantes , Raízes de Plantas/microbiologia , Poluentes do Solo
15.
Mycorrhiza ; 13(4): 191-8, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12938031

RESUMO

Identification of arbuscular mycorrhizal fungi (AMF) on roots is almost impossible with morphological methods and, due to the presence of contaminating fungi, it is also difficult with molecular biological techniques. To allow broad investigation of the population structure of AMF in the field, we have established a new method to selectively amplify the internal transcribed spacer (ITS) region of most AMF with a unique primer set. Based on available sequences of the rDNA, one primer pair specific for AMF and a few other fungal groups was designed and combined in a nested PCR with the already established primer pair ITS5/ITS4. Amplification from contaminating organisms was reduced by an AluI restriction after the first reaction of the nested PCR. The method was assessed at five different field sites representing different types of habitats. Members of all major groups within the Glomeromycota (except Archaeosporaceae) were detected at the different sites. Gigasporaceae also proved detectable with the method based on cultivated strains.


Assuntos
Micorrizas/genética , Raízes de Plantas/microbiologia , Ascomicetos/genética , Sequência de Bases , Basidiomycota/genética , Biodiversidade , Quitridiomicetos/genética , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Desoxirribonucleases de Sítio Específico do Tipo II , Fungos/genética , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Alinhamento de Sequência
16.
Mycorrhiza ; 14(5): 295-306, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14534850

RESUMO

Ectomycorrhizas (EM) from aspen clones released on an experimental field were characterized by morphotyping, restriction analysis and internal transcribed spacer (ITS) sequencing. In addition, their community structure and spatial distribution was analyzed. Among the 23 observed morphotypes, six mycobionts dominated, forming roughly 90% of all ectomycorrhizas: Cenococcum geophilum, Laccaria sp., Phialocephala fortinii, two different Thelephoraceae, and one member of the Pezizales. The three most common morphotypes had an even spatial distribution, reflecting the high degree of homogeneity of the experimental field. The distribution of three other morphotypes was correlated with the distances to the spruce forest and deciduous trees bordering the experimental field. These two patterns allowed two invasion strategies of ectomycorrhizal fungi (EMF) to be recognized, the success of which depends on adaptation of the EMF to local ecological conditions.


Assuntos
Micorrizas/fisiologia , Populus/microbiologia , Agaricales/fisiologia , Agaricales/ultraestrutura , Ascomicetos/fisiologia , Ascomicetos/ultraestrutura , Ecossistema , Hifas/fisiologia , Hifas/ultraestrutura , Micorrizas/ultraestrutura , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição
17.
FEMS Yeast Res ; 4(6): 597-603, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15040947

RESUMO

The genera Cryptococcus and Dioszegia contain basidiomycetous yeasts found in a wide range of habitats. Primers to amplify the internal transcribed spacer (ITS) region of the nuclear ribosomal DNA (nrDNA) of arbuscular mycorrhizal fungi (AMF) also allow detecting members of this yeast group. Here we report the results of a sequence analysis using maximum parsimony on a set of 50 ITS sequences of yeasts associated with AMF structures (roots of 26 plant species, AM spores) from six field sites in Central Germany. Among 10 separated taxa, respectively five in the Tremellales and two in the Filobasidiales had unknown sequences. Therefore it was not possible to assign these sequences to any known species. The study indicates that exploring the diversity of Cryptococcus and Dioszegia in soil habitats with molecular methods might enlarge the actually estimated biodiversity of the group.


Assuntos
Basidiomycota/classificação , Cryptococcus/classificação , Ecossistema , Micorrizas , Raízes de Plantas/microbiologia , Esporos Fúngicos/fisiologia , Basidiomycota/genética , Cryptococcus/genética , DNA Espaçador Ribossômico/análise , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa