Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 181(5): 964-966, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32470404

RESUMO

Approximately 500 Ma ago, freshwater algae adapted to live on Earth's surface, subsequently enabling animal life to pursue. Over the last decade, genomes of non-seed plants enabled us to infer trait evolution of early land plants. In this issue of Cell, Jiao et al. uncovered another genome, of the streptophyte algae Penium, enhancing our understanding of the water-to-land transition.


Assuntos
Evolução Biológica , Embriófitas , Embriófitas/genética , Genoma , Filogenia , Plantas/genética
2.
Plant Cell ; 36(7): 2465-2490, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38513609

RESUMO

Plants in habitats with unpredictable conditions often have diversified bet-hedging strategies that ensure fitness over a wider range of variable environmental factors. A striking example is the diaspore (seed and fruit) heteromorphism that evolved to maximize species survival in Aethionema arabicum (Brassicaceae) in which external and endogenous triggers allow the production of two distinct diaspores on the same plant. Using this dimorphic diaspore model, we identified contrasting molecular, biophysical, and ecophysiological mechanisms in the germination responses to different temperatures of the mucilaginous seeds (M+ seed morphs), the dispersed indehiscent fruits (IND fruit morphs), and the bare non-mucilaginous M- seeds obtained by pericarp (fruit coat) removal from IND fruits. Large-scale comparative transcriptome and hormone analyses of M+ seeds, IND fruits, and M- seeds provided comprehensive datasets for their distinct thermal responses. Morph-specific differences in co-expressed gene modules in seeds, as well as in seed and pericarp hormone contents, identified a role of the IND pericarp in imposing coat dormancy by generating hypoxia affecting abscisic acid (ABA) sensitivity. This involved expression of morph-specific transcription factors, hypoxia response, and cell wall remodeling genes, as well as altered ABA metabolism, transport, and signaling. Parental temperature affected ABA contents and ABA-related gene expression and altered IND pericarp biomechanical properties. Elucidating the molecular framework underlying the diaspore heteromorphism can provide insight into developmental responses to globally changing temperatures.


Assuntos
Brassicaceae , Frutas , Regulação da Expressão Gênica de Plantas , Germinação , Sementes , Temperatura , Germinação/genética , Germinação/fisiologia , Sementes/genética , Sementes/fisiologia , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Brassicaceae/genética , Brassicaceae/fisiologia , Brassicaceae/metabolismo , Frutas/genética , Frutas/fisiologia , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transcriptoma/genética , Dormência de Plantas/genética , Dormência de Plantas/fisiologia , Ácido Abscísico/metabolismo
3.
Plant J ; 117(5): 1466-1486, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38059656

RESUMO

The establishment of moss spores is considered a milestone in plant evolution. They harbor protein networks underpinning desiccation tolerance and accumulation of storage compounds that can be found already in algae and that are also utilized in seeds and pollen. Furthermore, germinating spores must produce proteins that drive the transition through heterotrophic growth to the autotrophic plant. To get insight into the plasticity of this proteome, we investigated it at five timepoints of moss (Physcomitrium patens) spore germination and in protonemata and gametophores. The comparison to previously published Arabidopsis proteome data of seedling establishment showed that not only the proteomes of spores and seeds are functionally related, but also the proteomes of germinating spores and young seedlings. We observed similarities with regard to desiccation tolerance, lipid droplet proteome composition, control of dormancy, and ß-oxidation and the glyoxylate cycle. However, there were also striking differences. For example, spores lacked any obvious storage proteins. Furthermore, we did not detect homologs to the main triacylglycerol lipase in Arabidopsis seeds, SUGAR DEPENDENT1. Instead, we discovered a triacylglycerol lipase of the oil body lipase family and a lipoxygenase as being the overall most abundant proteins in spores. This finding indicates an alternative pathway for triacylglycerol degradation via oxylipin intermediates in the moss. The comparison of spores to Nicotiana tabacum pollen indicated similarities for example in regards to resistance to desiccation and hypoxia, but the overall developmental pattern did not align as in the case of seedling establishment and spore germination.


Assuntos
Arabidopsis , Bryopsida , Arabidopsis/metabolismo , Proteoma/metabolismo , Germinação , Processos Heterotróficos , Lipase/metabolismo , Plântula/metabolismo , Esporos/metabolismo , Bryopsida/metabolismo , Sementes/metabolismo
4.
Plant J ; 117(3): 909-923, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37953711

RESUMO

DELAY OF GERMINATION 1 is a key regulator of dormancy in flowering plants before seed germination. Bryophytes develop haploid spores with an analogous function to seeds. Here, we investigate whether DOG1 function during germination is conserved between bryophytes and flowering plants and analyse the underlying mechanism of DOG1 action in the moss Physcomitrium patens. Phylogenetic and in silico expression analyses were performed to identify and characterise DOG1 domain-containing genes in P. patens. Germination assays were performed to characterise a Ppdog1-like1 mutant, and replacement with AtDOG1 was carried out. Yeast two-hybrid assays were used to test the interaction of the PpDOG1-like protein with DELLA proteins from P. patens and A. thaliana. P. patens possesses nine DOG1 domain-containing genes. The DOG1-like protein PpDOG1-L1 (Pp3c3_9650) interacts with PpDELLAa and PpDELLAb and the A. thaliana DELLA protein AtRGA in yeast. Protein truncations revealed the DOG1 domain as necessary and sufficient for interaction with PpDELLA proteins. Spores of Ppdog1-l1 mutant germinate faster than wild type, but replacement with AtDOG1 reverses this effect. Our data demonstrate a role for the PpDOG1-LIKE1 protein in moss spore germination, possibly alongside PpDELLAs. This suggests a conserved DOG1 domain function in germination, albeit with differential adaptation of regulatory networks in seed and spore germination.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Bryopsida , Germinação/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dormência de Plantas/genética , Filogenia , Esporos Fúngicos/metabolismo , Bryopsida/genética , Bryopsida/metabolismo , Sementes/metabolismo , Regulação da Expressão Gênica de Plantas
5.
Nature ; 565(7741): 650-653, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30651637

RESUMO

Fungi-induced plant diseases affect global food security and plant ecology. The biotrophic fungus Ustilago maydis causes smut disease in maize (Zea mays) plants by secreting numerous virulence effectors that reprogram plant metabolism and immune responses1,2. The secreted fungal chorismate mutase Cmu1 presumably affects biosynthesis of the plant immune signal salicylic acid by channelling chorismate into the phenylpropanoid pathway3. Here we show that one of the 20 maize-encoded kiwellins (ZmKWL1) specifically blocks the catalytic activity of Cmu1. ZmKWL1 hinders substrate access to the active site of Cmu1 through intimate interactions involving structural features that are specific to fungal Cmu1 orthologues. Phylogenetic analysis suggests that plant kiwellins have a versatile scaffold that can specifically counteract pathogen effectors such as Cmu1. We reveal the biological activity of a member of the kiwellin family, a widely conserved group of proteins that have previously been recognized only as important human allergens.


Assuntos
Antígenos de Plantas/metabolismo , Doenças das Plantas/microbiologia , Ustilago/metabolismo , Ustilago/patogenicidade , Fatores de Virulência/metabolismo , Zea mays/metabolismo , Zea mays/microbiologia , Corismato Mutase/antagonistas & inibidores , Corismato Mutase/química , Corismato Mutase/metabolismo , Ácido Corísmico/metabolismo , Modelos Moleculares , Filogenia , Doenças das Plantas/imunologia , Ácido Salicílico/imunologia , Ustilago/enzimologia , Zea mays/imunologia
6.
Plant J ; 114(1): 159-175, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36710658

RESUMO

The Arabidopsis COP1/SPA ubiquitin ligase suppresses photomorphogenesis in darkness. In the light, photoreceptors inactivate COP1/SPA to allow a light response. While SPA genes are specific to the green lineage, COP1 also exists in humans. This raises the question of when in evolution plant COP1 acquired the need for SPA accessory proteins. We addressed this question by generating Physcomitrium Ppcop1 mutants and comparing their visible and molecular phenotypes with those of Physcomitrium Ppspa mutants. The phenotype of Ppcop1 nonuple mutants resembles that of Ppspa mutants. Most importantly, both mutants produce green chloroplasts in complete darkness. They also exhibit dwarfed gametophores, disturbed branching of protonemata and absent gravitropism. RNA-sequencing analysis indicates that both mutants undergo weak constitutive light signaling in darkness. PpCOP1 and PpSPA proteins form a complex and they interact via their WD repeat domains with the VP motif of the cryptochrome CCE domain in a blue light-dependent manner. This resembles the interaction of Arabidopsis SPA proteins with Arabidopsis CRY1, and is different from that with Arabidopsis CRY2. Taken together, the data indicate that PpCOP1 and PpSPA act together to regulate growth and development of Physcomitrium. However, in contrast to their Arabidopsis orthologs, PpCOP1 and PpSPA proteins execute only partial suppression of light signaling in darkness. Hence, additional repressors may exist that contribute to the repression of a light response in dark-exposed Physcomitrium.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Bryopsida , Humanos , Arabidopsis/metabolismo , Criptocromos/genética , Criptocromos/metabolismo , Proteínas de Arabidopsis/metabolismo , Bryopsida/genética , Bryopsida/metabolismo , Transdução de Sinal Luminoso/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Regulação da Expressão Gênica de Plantas
7.
New Phytol ; 241(3): 1144-1160, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38072860

RESUMO

Chlorella ohadii was isolated from desert biological soil crusts, one of the harshest habitats on Earth, and is emerging as an exciting new green model for studying growth, photosynthesis and metabolism under a wide range of conditions. Here, we compared the genome of C. ohadii, the fastest growing alga on record, to that of other green algae, to reveal the genomic imprints empowering its unparalleled growth rate and resistance to various stressors, including extreme illumination. This included the genome of its close relative, but slower growing and photodamage sensitive, C. sorokiniana UTEX 1663. A larger number of ribosome-encoding genes, high intron abundance, increased codon bias and unique genes potentially involved in metabolic flexibility and resistance to photodamage are all consistent with the faster growth of C. ohadii. Some of these characteristics highlight general trends in Chlorophyta and Chlorella spp. evolution, and others open new broad avenues for mechanistic exploration of their relationship with growth. This work entails a unique case study for the genomic adaptations and costs of exceptionally fast growth and sheds light on the genomic signatures of fast growth in photosynthetic cells. It also provides an important resource for future studies leveraging the unique properties of C. ohadii for photosynthesis and stress response research alongside their utilization for synthetic biology and biotechnology aims.


Assuntos
Chlorella , Chlorella/genética , Fotossíntese , Genômica
8.
J Dairy Sci ; 107(5): 2983-2998, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37977443

RESUMO

The cost benefits of herd genotyping and the benefits of using sexed semen have been affected by recent improvements in sexing technologies, incorporation of direct health traits in the German total merit index for Holstein cattle, deteriorating prices for purebred heifer calves and bull calves, and introduction of herd genotyping programs. Inseminating genetically superior dams with female-sexed Holstein semen increases the mean breeding value of heifer calves and can produce more Holstein heifer calves than are needed for replacement. This provides an opportunity to increase the selection response in health and production traits at the farm level. A deterministic model is introduced that predicts the increase or decrease in net profit when a farmer takes part in a herd genotyping program and follows a certain insemination strategy. The types of semen allocated to cows and heifers may be sexed or unsexed and Holstein or beef breed. Genetically superior heifers and cows are inseminated with female-sexed Holstein semen, intermediate dams with unsexed Holstein semen, and genetically inferior dams with unsexed or male-sexed beef breed semen. In general, participating in a herd genotyping program is beneficial for German Holstein breeders. The optimum proportions of cows and heifers that should be inseminated with a certain type of semen are sensitive to farm-specific peculiarities. A small price difference between crossbred bull calves and crossbred heifer calves often makes the use of male-sexed beef breed semen uneconomic. Under the conditions considered, it was found to be advantageous to inseminate approximately 50% of heifers and 10% of cows with the highest genetic merit with female-sexed Holstein semen. The optimum proportion of cows that should be inseminated with unsexed beef breed semen was found to be approximately 40%. In a herd with a low replacement rate, the selected heifers can exhibit their genetic superiority over a longer period of time, and a larger proportion of cows can be inseminated with beef breed semen. Participation in a herd genotyping program is, therefore, particularly beneficial for herds with low replacement rates.

9.
New Phytol ; 238(2): 654-672, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36683399

RESUMO

Proteins of the DELLA family integrate environmental signals to regulate growth and development throughout the plant kingdom. Plants expressing non-degradable DELLA proteins underpinned the development of high-yielding 'Green Revolution' dwarf crop varieties in the 1960s. In vascular plants, DELLAs are regulated by gibberellins, diterpenoid plant hormones. How DELLA protein function has changed during land plant evolution is not fully understood. We have examined the function and interactions of DELLA proteins in the moss Physcomitrium (Physcomitrella) patens, in the sister group of vascular plants (Bryophytes). PpDELLAs do not undergo the same regulation as flowering plant DELLAs. PpDELLAs are not degraded by diterpenes, do not interact with GID1 gibberellin receptor proteins and do not participate in responses to abiotic stress. PpDELLAs do share a function with vascular plant DELLAs during reproductive development. PpDELLAs also regulate spore germination. PpDELLAs interact with moss-specific photoreceptors although a function for PpDELLAs in light responses was not detected. PpDELLAs likely act as 'hubs' for transcriptional regulation similarly to their homologues across the plant kingdom. Taken together, these data demonstrate that PpDELLA proteins share some biological functions with DELLAs in flowering plants, but other DELLA functions and regulation evolved independently in both plant lineages.


Assuntos
Proteínas de Arabidopsis , Bryopsida , Esporos , Traqueófitas , Diterpenos , Germinação , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas , Proteínas de Arabidopsis/metabolismo , Esporos/metabolismo , Traqueófitas/metabolismo , Bryopsida/metabolismo , Plantas/metabolismo , Giberelinas/metabolismo , Giberelinas/farmacologia
10.
Plant Cell ; 32(5): 1361-1376, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32152187

RESUMO

Since the discovery two decades ago that transgenes are efficiently integrated into the genome of Physcomitrella patens by homologous recombination, this moss has been a premier model system to study evolutionary developmental biology questions, stem cell reprogramming, and the biology of nonvascular plants. P patens was the first non-seed plant to have its genome sequenced. With this level of genomic information, together with increasing molecular genetic tools, a large number of reverse genetic studies have propelled the use of this model system. A number of technological advances have recently opened the door to forward genetics as well as extremely efficient and precise genome editing in P patens Additionally, careful phylogenetic studies with increased resolution have suggested that P patens emerged from within Physcomitrium Thus, rather than Physcomitrella patens, the species should be named Physcomitrium patens Here we review these advances and describe the areas where P patens has had the most impact on plant biology.


Assuntos
Bryopsida/fisiologia , Modelos Biológicos , Evolução Biológica , Bryopsida/anatomia & histologia , Bryopsida/classificação , Bryopsida/genética , Filogenia , Poliploidia
11.
Genet Sel Evol ; 55(1): 38, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291496

RESUMO

BACKGROUND: This paper highlights the relationships between economic weights, genetic progress, and phenotypic progress in genomic breeding programs that aim at generating genetic progress in complex, i.e., multi-trait, breeding objectives via a combination of estimated breeding values for different trait complexes. RESULTS: Based on classical selection index theory in combination with quantitative genetic models, we provide a methodological framework for calculating expected genetic and phenotypic progress for all components of a complex breeding objective. We further provide an approach to study the sensitivity of the system to modifications, e.g. to changes in the economic weights. We propose a novel approach to derive the covariance structure of the stochastic errors of estimated breeding values from the observed correlations of estimated breeding values. We define 'realized economic weights' as those weights that would coincide with the observed composition of the genetic trend and show, how they can be calculated. The suggested methodology is illustrated with an index that aims at achieving a breeding goal composed of six trait complexes, that was applied in German Holstein cattle breeding until 2021. CONCLUSIONS: Based on the presented results, the main conclusions are (i) the composition of the observed genetic progress matches the expectations well, with predictions being slightly better when the covariance of estimation errors is taken into account; (ii) the composition of the expected phenotypic trend deviates significantly from the expected genetic trend due to the differences in trait heritabilities; and (iii) the realized economic weights derived from the observed genetic trend deviate substantially from the predefined ones, in one case even with a reversed sign. Further results highlight the implications of the change to a modified breeding goal based on the example of a new index comprising eight, partly new, trait complexes, which is used since 2021 in the German Holstein breeding program. The proposed framework and the analytical tools and software provided will be useful to define more rational and generally accepted breeding objectives in the future.


Assuntos
Genoma , Seleção Genética , Animais , Bovinos/genética , Fenótipo , Genômica , Modelos Genéticos
12.
J Anim Breed Genet ; 140(2): 235-252, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36377637

RESUMO

Milk production among the smallholder dairy farmers in Zambia is reported to be low despite improvements in milk collection infrastructure and unmet demand by the populace. This study was conducted to characterize cattle breeds and the breeding strategies of the smallholder dairy production system in the Southern province of Zambia. The study was conducted using questionnaires to obtain responses from identified respondents in six districts considered the main dairy cattle producing areas. One hundred and twenty questionnaires were administered and available for descriptive statistical analysis. The cattle genetic groups included local (Tonga and Angoni) breeds and their crosses (40.0%); beef (Boran and Brahman) breeds and their crosses (23.3%); Friesian breed and its crosses (28.8%); Jersey breed and its crosses (4.9%); and Fleckvieh breed (3.0%). Calving rate was found to be to be between 36% and 50% for the dairy herds. Compared to the other genetic groups, it was noted that Friesian and its crosses had higher milk production (3.55 L vs. 1.4 L). The low milk yield reported could be attributed to the period of study, which coincided with the long dry season between April and October. The Friesian and its crosses recorded earlier age at first calving (2.65 vs. 2.8 years), shorter longevity (10.5 vs. 12.25 years), and shorter lactation length (7.5 vs. 9.25 months). Jersey and its crosses, on the other hand, had an above average performance for all indices of economic importance such as milk production, lactation length, age at first calving, longevity, and number of calves produced. The results indicated natural mating was practised by 85% of the farmers. Farmer-preferred traits include size and conformation (23%); performance and colour (16% and 15%, respectively) in the choice of a bull. Selection by farmers were thus based on simple observation without pedigree or performance-based genetic evaluation. It was apparent that the smallholder dairy production system is in a shifting trend to transform the mainly local and beef breed animals into dairy herds through crossing with exotic dairy breeds. The production system is, however, faced with the challenges of water and feed supply to meet nutritional requirements, and high disease burden. Jersey breed was found to be a logical choice for the resource poor smallholder dairy farmers. The development and management of the smallholder dairy breeding schemes should be all-inclusive and directed at the prevalent production systems with the aim of also improving the feeding and management practices.


Assuntos
Indústria de Laticínios , Lactação , Feminino , Bovinos/genética , Animais , Masculino , Zâmbia , Indústria de Laticínios/métodos , Lactação/genética , Leite/química , Inquéritos e Questionários
13.
Plant J ; 108(6): 1786-1797, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34687260

RESUMO

In the last few years, next-generation sequencing techniques have started to be used to identify new viruses infecting plants. This has allowed to rapidly increase our knowledge on viruses other than those causing symptoms in economically important crops. Here we used this approach to identify a virus infecting Physcomitrium patens that has the typical structure of the double-stranded RNA endogenous viruses of the Amalgaviridae family, which we named Physcomitrium patens amalgavirus 1, or PHPAV1. PHPAV1 is present only in certain accessions of P. patens, where its RNA can be detected throughout the cell cycle of the plant. Our analysis demonstrates that PHPAV1 can be vertically transmitted through both paternal and maternal germlines, in crosses between accessions that contain the virus with accessions that do not contain it. This work suggests that PHPAV1 can replicate in genomic backgrounds different from those that actually contain the virus and opens the door for future studies on virus-host coevolution.


Assuntos
Bryopsida/virologia , Doenças das Plantas/virologia , Vírus de Plantas/patogenicidade , Vírus de RNA/patogenicidade , Transmissão Vertical de Doenças Infecciosas , Filogenia , Vírus de Plantas/genética , Vírus de Plantas/fisiologia , Vírus de RNA/genética , Vírus de RNA/fisiologia , Replicação Viral
14.
Plant J ; 106(1): 275-293, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33453123

RESUMO

Aethionema arabicum is an important model plant for Brassicaceae trait evolution, particularly of seed (development, regulation, germination, dormancy) and fruit (development, dehiscence mechanisms) characters. Its genome assembly was recently improved but the gene annotation was not updated. Here, we improved the Ae. arabicum gene annotation using 294 RNA-seq libraries and 136 307 full-length PacBio Iso-seq transcripts, increasing BUSCO completeness by 11.6% and featuring 5606 additional genes. Analysis of orthologs showed a lower number of genes in Ae. arabicum than in other Brassicaceae, which could be partially explained by loss of homeologs derived from the At-α polyploidization event and by a lower occurrence of tandem duplications after divergence of Aethionema from the other Brassicaceae. Benchmarking of MADS-box genes identified orthologs of FUL and AGL79 not found in previous versions. Analysis of full-length transcripts related to ABA-mediated seed dormancy discovered a conserved isoform of PIF6-ß and antisense transcripts in ABI3, ABI4 and DOG1, among other cases found of different alternative splicing between Turkey and Cyprus ecotypes. The presented data allow alternative splicing mining and proposition of numerous hypotheses to research evolution and functional genomics. Annotation data and sequences are available at the Ae. arabicum DB (https://plantcode.online.uni-marburg.de/aetar_db).


Assuntos
Brassicaceae/metabolismo , Brassicaceae/fisiologia , Germinação/fisiologia , Sementes/metabolismo , Sementes/fisiologia , Brassicaceae/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Genoma de Planta/genética , Germinação/genética , Sementes/genética
15.
Plant J ; 107(1): 166-181, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33945185

RESUMO

The developmental transition from a fertilized ovule to a dispersed diaspore (seed or fruit) involves complex differentiation processes of the ovule's integuments leading to the diversity in mature seed coat structures in angiosperms. In this study, comparative imaging and transcriptome analysis were combined to investigate the morph-specific developmental differences during outer seed coat differentiation and mucilage production in Aethionema arabicum, the Brassicaceae model for diaspore dimorphism. One of the intriguing adaptations of this species is the production and dispersal of morphologically distinct, mucilaginous and non-mucilaginous diaspores from the same plant (dimorphism). The dehiscent fruit morph programme producing multiple mucilaginous seed diaspores was used as the default trait combination, similar to Arabidopsis thaliana, and was compared with the indehiscent fruit morph programme leading to non-mucilaginous diaspores. Synchrotron-based radiation X-ray tomographic microscopy revealed a co-ordinated framework of morph-specific early changes in internal anatomy of developing A. arabicum gynoecia including seed abortion in the indehiscent programme and mucilage production by the mucilaginous seed coat. The associated comparative analysis of the gene expression patterns revealed that the unique seed coat dimorphism of Ae. arabicum provides an excellent model system for comparative study of the control of epidermal cell differentiation and mucilage biosynthesis by the mucilage transcription factor cascade and their downstream cell wall and mucilage remodelling genes. Elucidating the underlying molecular framework of the dimorphic diaspore syndrome is key to understanding differential regulation of bet-hedging survival strategies in challenging environments, timely in the face of global climatic change.


Assuntos
Brassicaceae/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Sementes/crescimento & desenvolvimento , Fatores de Transcrição/genética , Ácido Abscísico/metabolismo , Brassicaceae/citologia , Brassicaceae/fisiologia , Diferenciação Celular , Frutas/genética , Zíper de Leucina , Células Vegetais , Proteínas de Plantas/genética , Sementes/genética , Sementes/metabolismo , Análise de Sequência de RNA
16.
BMC Plant Biol ; 22(1): 340, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35836106

RESUMO

BACKGROUND: Fruits are the seed-bearing structures of flowering plants and are highly diverse in terms of morphology, texture and maturation. Dehiscent fruits split open upon maturation to discharge their seeds while indehiscent fruits are dispersed as a whole. Indehiscent fruits evolved from dehiscent fruits several times independently in the crucifer family (Brassicaceae). The fruits of Lepidium appelianum, for example, are indehiscent while the fruits of the closely related L. campestre are dehiscent. Here, we investigate the molecular and genetic mechanisms underlying the evolutionary transition from dehiscent to indehiscent fruits using these two Lepidium species as model system. RESULTS: We have sequenced the transcriptomes and small RNAs of floral buds, flowers and fruits of L. appelianum and L. campestre and analyzed differentially expressed genes (DEGs) and differently differentially expressed genes (DDEGs). DEGs are genes that show significantly different transcript levels in the same structures (buds, flowers and fruits) in different species, or in different structures in the same species. DDEGs are genes for which the change in expression level between two structures is significantly different in one species than in the other. Comparing the two species, the highest number of DEGs was found in flowers, followed by fruits and floral buds while the highest number of DDEGs was found in fruits versus flowers followed by flowers versus floral buds. Several gene ontology terms related to cell wall synthesis and degradation were overrepresented in different sets of DEGs highlighting the importance of these processes for fruit opening. Furthermore, the fruit valve identity genes FRUITFULL and YABBY3 were among the DEGs identified. Finally, the microRNA miR166 as well as the TCP transcription factors BRANCHED1 (BRC1) and TCP FAMILY TRANSCRIPTION FACTOR 4 (TCP4) were found to be DDEGs. CONCLUSIONS: Our study reveals differences in gene expression between dehiscent and indehiscent fruits and uncovers miR166, BRC1 and TCP4 as candidate genes for the evolutionary transition from dehiscent to indehiscent fruits in Lepidium.


Assuntos
Brassicaceae , Lepidium , Brassicaceae/genética , Brassicaceae/metabolismo , Flores/genética , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Lepidium/genética , Transcriptoma
17.
J Exp Bot ; 73(13): 4291-4305, 2022 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-35148385

RESUMO

Bryophytes are useful models for the study of plant evolution, development, plant-fungal symbiosis, stress responses, and gametogenesis. Additionally, their dominant haploid gametophytic phase makes them great models for functional genomics research, allowing straightforward genome editing and gene knockout via CRISPR or homologous recombination. Until 2016, however, the only bryophyte genome sequence published was that of Physcomitrium patens. Throughout recent years, several other bryophyte genomes and transcriptome datasets became available, enabling better comparative genomics in evolutionary studies. The increase in the number of bryophyte genome and transcriptome resources available has yielded a plethora of annotations, databases, and bioinformatics tools to access the new data, which covers the large diversity of this clade and whose biology comprises features such as association with arbuscular mycorrhiza fungi, sex chromosomes, low gene redundancy, or loss of RNA editing genes for organellar transcripts. Here we provide a guide to resources available for bryophytes with regards to genome and transcriptome databases and bioinformatics tools.


Assuntos
Briófitas , Transcriptoma , Briófitas/genética , Biologia Computacional , Genômica , Filogenia
18.
Plant J ; 102(1): 165-177, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31714620

RESUMO

Physcomitrella patens is a bryophyte model plant that is often used to study plant evolution and development. Its resources are of great importance for comparative genomics and evo-devo approaches. However, expression data from Physcomitrella patens were so far generated using different gene annotation versions and three different platforms: CombiMatrix and NimbleGen expression microarrays and RNA sequencing. The currently available P. patens expression data are distributed across three tools with different visualization methods to access the data. Here, we introduce an interactive expression atlas, Physcomitrella Expression Atlas Tool (PEATmoss), that unifies publicly available expression data for P. patens and provides multiple visualization methods to query the data in a single web-based tool. Moreover, PEATmoss includes 35 expression experiments not previously available in any other expression atlas. To facilitate gene expression queries across different gene annotation versions, and to access P. patens annotations and related resources, a lookup database and web tool linked to PEATmoss was implemented. PEATmoss can be accessed at https://peatmoss.online.uni-marburg.de.


Assuntos
Bryopsida/genética , Transcriptoma , Atlas como Assunto , Bryopsida/metabolismo , Conjuntos de Dados como Assunto , Expressão Gênica/genética , Genes de Plantas/genética , Internet , Micorrizas/metabolismo , Transcriptoma/genética
19.
Fungal Genet Biol ; 152: 103570, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34004340

RESUMO

Ustilago maydis encodes ten predicted light-sensing proteins. The biological functions of only a few of them are elucidated. Among the characterized ones are two DNA-photolyases and two rhodopsins that act as DNA-repair enzymes or green light-driven proton pumps, respectively. Here we report on the role of two other photoreceptors in U. maydis, namely White collar 1 (Wco1) and Phytochrome 1 (Phy1). We show that they bind flavins or biliverdin as chromophores, respectively. Both photoreceptors undergo a photocycle in vitro. Wco1 is the dominant blue light receptor in the saprophytic phase, controlling all of the 324 differentially expressed genes in blue light. U. maydis also responds to red and far-red light. However, the number of red or far-red light-controlled genes is less compared to blue light-regulated ones. Moreover, most of the red and far-red light-controlled genes not only depend on Phy1 but also on Wco1, indicating partial coregulation of gene expression by both photoreceptors. GFP-fused Wco1 is preferentially located in the nucleus, Phy1 in the cytosol, thus providing no hint that these photoreceptors directly interact or operate within the same complex. This is the first report on a functional characterization and coaction of White collar 1 and phytochrome orthologs in basidiomycetes.


Assuntos
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Fitocromo/genética , Fitocromo/metabolismo , Ustilago/genética , Ustilago/metabolismo , Basidiomycota , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos da radiação , Genes Fúngicos/genética , Luz , Fitocromo/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma , Ustilago/efeitos dos fármacos , Ustilago/efeitos da radiação
20.
Bioinformatics ; 36(11): 3314-3321, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32181821

RESUMO

MOTIVATION: Bisulfite sequencing (BS-seq) is a state-of-the-art technique for investigating methylation of the DNA to gain insights into the epigenetic regulation. Several algorithms have been published for identification of differentially methylated regions (DMRs). However, the performances of the individual methods remain unclear and it is difficult to optimally select an algorithm in application settings. RESULTS: We analyzed BS-seq data from four plants covering three taxonomic groups. We first characterized the data using multiple summary statistics describing methylation levels, coverage, noise, as well as frequencies, magnitudes and lengths of methylated regions. Then, simulated datasets with most similar characteristics to real experimental data were created. Seven different algorithms (metilene, methylKit, MOABS, DMRcate, Defiant, BSmooth, MethylSig) for DMR identification were applied and their performances were assessed. A blind and independent study design was chosen to reduce bias and to derive practical method selection guidelines. Overall, metilene had superior performance in most settings. Data attributes, such as coverage and spread of the DMR lengths, were found to be useful for selecting the best method for DMR detection. A decision tree to select the optimal approach based on these data attributes is provided. The presented procedure might serve as a general strategy for deriving algorithm selection rules tailored to demands in specific application settings. AVAILABILITY AND IMPLEMENTATION: Scripts that were used for the analyses and that can be used for prediction of the optimal algorithm are provided at https://github.com/kreutz-lab/DMR-DecisionTree. Simulated and experimental data are available at https://doi.org/10.6084/m9.figshare.11619045. CONTACT: ckreutz@imbi.uni-freiburg.de. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Benchmarking , Epigênese Genética , Algoritmos , Metilação de DNA , Projetos de Pesquisa , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa