Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Plant Cell Environ ; 44(11): 3524-3537, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34418115

RESUMO

Under field conditions, plants are subject to wind-induced movement which creates fluctuations of light intensity and spectral quality reaching the leaves, defined here as windflecks. Within this study, irradiance within two contrasting wheat (Triticum aestivum) canopies during full sun conditions was measured using a spectroradiometer to determine the frequency, duration and magnitude of low- to high-light events plus the spectral composition during wind-induced movement. Similarly, a static canopy was modelled using three-dimensional reconstruction and ray tracing to determine fleck characteristics without the presence of wind. Corresponding architectural traits were measured manually and in silico including plant height, leaf area and angle plus biomechanical properties. Light intensity can differ up to 40% during a windfleck, with changes occurring on a sub-second scale compared to ~5 min in canopies not subject to wind. Features such as a shorter height, more erect leaf stature and having an open structure led to an increased frequency and reduced time interval of light flecks in the CMH79A canopy compared to Paragon. This finding illustrates the potential for architectural traits to be selected to improve the canopy light environment and provides the foundation to further explore the links between plant form and function in crop canopies.


Assuntos
Folhas de Planta/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Vento , Fenômenos Biomecânicos , Luz , Fenótipo
2.
Mol Cell ; 50(5): 661-74, 2013 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-23746350

RESUMO

Centromeres play several important roles in ensuring proper chromosome segregation. Not only do they promote kinetochore assembly for microtubule attachment, but they also support robust sister chromatid cohesion at pericentromeres and facilitate replication of centromeric DNA early in S phase. However, it is still elusive how centromeres orchestrate all these functions at the same site. Here, we show that the budding yeast Dbf4-dependent kinase (DDK) accumulates at kinetochores in telophase, facilitated by the Ctf19 kinetochore complex. This promptly recruits Sld3-Sld7 replication initiator proteins to pericentromeric replication origins so that they initiate replication early in S phase. Furthermore, DDK at kinetochores independently recruits the Scc2-Scc4 cohesin loader to centromeres in G1 phase. This enhances cohesin loading and facilitates robust pericentromeric cohesion in S phase. Thus, we have found the central mechanism by which kinetochores orchestrate early S phase DNA replication and robust sister chromatid cohesion at microtubule attachment sites.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Replicação do DNA , Cinetocoros/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/genética , Centrômero/genética , Centrômero/metabolismo , Cromátides/genética , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Serina-Treonina Quinases/genética , Fase S/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
3.
J Exp Bot ; 71(22): 7382-7392, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-32905587

RESUMO

High light intensities raise photosynthetic and plant growth rates but can cause damage to the photosynthetic machinery. The likelihood and severity of deleterious effects are minimised by a set of photoprotective mechanisms, one key process being the controlled dissipation of energy from chlorophyll within PSII known as non-photochemical quenching (NPQ). Although ubiquitous, the role of NPQ in plant productivity is important because it momentarily reduces the quantum efficiency of photosynthesis. Rice plants overexpressing and deficient in the gene encoding a central regulator of NPQ, the protein PsbS, were used to assess the effect of protective effectiveness of NPQ (pNPQ) at the canopy scale. Using a combination of three-dimensional reconstruction, modelling, chlorophyll fluorescence, and gas exchange, the influence of altered NPQ capacity on the distribution of pNPQ was explored. A higher phototolerance in the lower layers of a canopy was found, regardless of genotype, suggesting a mechanism for increased protection for leaves that experience relatively low light intensities interspersed with brief periods of high light. Relative to wild-type plants, psbS overexpressors have a reduced risk of photoinactivation and early growth advantage, demonstrating that manipulating photoprotective mechanisms can impact both subcellular mechanisms and whole-canopy function.


Assuntos
Oryza , Clorofila , Luz , Oryza/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo
4.
Plant Physiol ; 176(2): 1233-1246, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29217593

RESUMO

Photosynthetic acclimation (photoacclimation) is the process whereby leaves alter their morphology and/or biochemistry to optimize photosynthetic efficiency and productivity according to long-term changes in the light environment. The three-dimensional architecture of plant canopies imposes complex light dynamics, but the drivers for photoacclimation in such fluctuating environments are poorly understood. A technique for high-resolution three-dimensional reconstruction was combined with ray tracing to simulate a daily time course of radiation profiles for architecturally contrasting field-grown wheat (Triticum aestivum) canopies. An empirical model of photoacclimation was adapted to predict the optimal distribution of photosynthesis according to the fluctuating light patterns throughout the canopies. While the photoacclimation model output showed good correlation with field-measured gas-exchange data at the top of the canopy, it predicted a lower optimal light-saturated rate of photosynthesis at the base. Leaf Rubisco and protein contents were consistent with the measured optimal light-saturated rate of photosynthesis. We conclude that, although the photosynthetic capacity of leaves is high enough to exploit brief periods of high light within the canopy (particularly toward the base), the frequency and duration of such sunflecks are too small to make acclimation a viable strategy in terms of carbon gain. This suboptimal acclimation renders a large portion of residual photosynthetic capacity unused and reduces photosynthetic nitrogen use efficiency at the canopy level, with further implications for photosynthetic productivity. It is argued that (1) this represents an untapped source of photosynthetic potential and (2) canopy nitrogen could be lowered with no detriment to carbon gain or grain protein content.


Assuntos
Aclimatação/fisiologia , Modelos Biológicos , Fotossíntese/fisiologia , Triticum/fisiologia , Luz , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Reino Unido
5.
Ann Bot ; 122(2): 291-302, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29846520

RESUMO

Background and Aims: Diurnal changes in solar position and intensity combined with the structural complexity of plant architecture result in highly variable and dynamic light patterns within the plant canopy. This affects productivity through the complex ways that photosynthesis responds to changes in light intensity. Current methods to characterize light dynamics, such as ray-tracing, are able to produce data with excellent spatio-temporal resolution but are computationally intensive and the resulting data are complex and high-dimensional. This necessitates development of more economical models for summarizing the data and for simulating realistic light patterns over the course of a day. Methods: High-resolution reconstructions of field-grown plants are assembled in various configurations to form canopies, and a forward ray-tracing algorithm is applied to the canopies to compute light dynamics at high (1 min) temporal resolution. From the ray-tracer output, the sunlit or shaded state for each patch on the plants is determined, and these data are used to develop a novel stochastic model for the sunlit-shaded patterns. The model is designed to be straightforward to fit to data using maximum likelihood estimation, and fast to simulate from. Key Results: For a wide range of contrasting 3-D canopies, the stochastic model is able to summarize, and replicate in simulations, key features of the light dynamics. When light patterns simulated from the stochastic model are used as input to a model of photoinhibition, the predicted reduction in carbon gain is similar to that from calculations based on the (extremely costly) ray-tracer data. Conclusions: The model provides a way to summarize highly complex data in a small number of parameters, and a cost-effective way to simulate realistic light patterns. Simulations from the model will be particularly useful for feeding into larger-scale photosynthesis models for calculating how light dynamics affects the photosynthetic productivity of canopies.


Assuntos
Algoritmos , Carbono/metabolismo , Modelos Biológicos , Fotossíntese/efeitos da radiação , Plantas/anatomia & histologia , Simulação por Computador , Imageamento Tridimensional , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Fenômenos Fisiológicos Vegetais , Plantas/efeitos da radiação , Luz Solar , Triticum/anatomia & histologia , Triticum/fisiologia , Triticum/efeitos da radiação
6.
Ann Bot ; 119(4): 517-532, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28065926

RESUMO

Background and Aims: Intercropping systems contain two or more species simultaneously in close proximity. Due to contrasting features of the component crops, quantification of the light environment and photosynthetic productivity is extremely difficult. However it is an essential component of productivity. Here, a low-tech but high-resolution method is presented that can be applied to single- and multi-species cropping systems to facilitate characterization of the light environment. Different row layouts of an intercrop consisting of Bambara groundnut ( Vigna subterranea ) and proso millet ( Panicum miliaceum ) have been used as an example and the new opportunities presented by this approach have been analysed. Methods: Three-dimensional plant reconstruction, based on stereo cameras, combined with ray tracing was implemented to explore the light environment within the Bambara groundnut-proso millet intercropping system and associated monocrops. Gas exchange data were used to predict the total carbon gain of each component crop. Key Results: The shading influence of the tall proso millet on the shorter Bambara groundnut results in a reduction in total canopy light interception and carbon gain. However, the increased leaf area index (LAI) of proso millet, higher photosynthetic potential due to the C4 pathway and sub-optimal photosynthetic acclimation of Bambara groundnut to shade means that increasing the number of rows of millet will lead to greater light interception and carbon gain per unit ground area, despite Bambara groundnut intercepting more light per unit leaf area. Conclusions: Three-dimensional reconstruction combined with ray tracing provides a novel, accurate method of exploring the light environment within an intercrop that does not require difficult measurements of light interception and data-intensive manual reconstruction, especially for such systems with inherently high spatial possibilities. It provides new opportunities for calculating potential productivity within multi-species cropping systems, enables the quantification of dynamic physiological differences between crops grown as monoculture and those within intercrops, and enables the prediction of new productive combinations of previously untested crops.


Assuntos
Produção Agrícola , Imageamento Tridimensional , Produção Agrícola/métodos , Imageamento Tridimensional/métodos , Luz , Modelos Teóricos , Panicum/crescimento & desenvolvimento , Fotossíntese , Vigna/crescimento & desenvolvimento
7.
Nucleic Acids Res ; 43(16): 7865-77, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26160884

RESUMO

Each cell division requires the unwinding of millions of DNA base pairs to allow chromosome duplication and gene transcription. As DNA replication and transcription share the same template, conflicts between both processes are unavoidable and head-on collisions are thought to be particularly problematic. Surprisingly, a recent study reported unperturbed cell cycle progression in Escherichia coli cells with an ectopic replication origin in which highly transcribed rrn operons were forced to be replicated opposite to normal. In this study we have re-generated a similar strain and found the doubling time to be twice that of normal cells. Replication profiles of this background revealed significant deviations in comparison to wild-type profiles, particularly in highly transcribed regions and the termination area. These deviations were alleviated by mutations that either inactivate the termination area or destabilise RNA polymerase complexes and allow their easier displacement by replication forks. Our data demonstrate that head-on replication-transcription conflicts are highly problematic. Indeed, analysis of the replication profile of the previously published E. coli construct revealed a chromosomal rearrangement that alleviates replication-transcription conflicts in an intriguingly simple way. Our data support the idea that avoiding head-on collisions has significantly contributed to shaping the distinct architecture of bacterial chromosomes.


Assuntos
Cromossomos Bacterianos , Replicação do DNA , Escherichia coli/genética , Origem de Replicação , Transcrição Gênica , Escherichia coli/crescimento & desenvolvimento
8.
Plant Physiol ; 169(2): 1192-204, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26282240

RESUMO

Photoinhibition reduces photosynthetic productivity; however, it is difficult to quantify accurately in complex canopies partly because of a lack of high-resolution structural data on plant canopy architecture, which determines complex fluctuations of light in space and time. Here, we evaluate the effects of photoinhibition on long-term carbon gain (over 1 d) in three different wheat (Triticum aestivum) lines, which are architecturally diverse. We use a unique method for accurate digital three-dimensional reconstruction of canopies growing in the field. The reconstruction method captures unique architectural differences between lines, such as leaf angle, curvature, and leaf density, thus providing a sensitive method of evaluating the productivity of actual canopy structures that previously were difficult or impossible to obtain. We show that complex data on light distribution can be automatically obtained without conventional manual measurements. We use a mathematical model of photosynthesis parameterized by field data consisting of chlorophyll fluorescence, light response curves of carbon dioxide assimilation, and manual confirmation of canopy architecture and light attenuation. Model simulations show that photoinhibition alone can result in substantial reduction in carbon gain, but this is highly dependent on exact canopy architecture and the diurnal dynamics of photoinhibition. The use of such highly realistic canopy reconstructions also allows us to conclude that even a moderate change in leaf angle in upper layers of the wheat canopy led to a large increase in the number of leaves in a severely light-limited state.


Assuntos
Carbono/metabolismo , Imageamento Tridimensional/métodos , Modelos Biológicos , Triticum/fisiologia , Fluorescência , Luz , Fotossíntese , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia
9.
Nucleic Acids Res ; 42(1): e3, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24089142

RESUMO

Eukaryotic genomes are replicated from multiple DNA replication origins. We present complementary deep sequencing approaches to measure origin location and activity in Saccharomyces cerevisiae. Measuring the increase in DNA copy number during a synchronous S-phase allowed the precise determination of genome replication. To map origin locations, replication forks were stalled close to their initiation sites; therefore, copy number enrichment was limited to origins. Replication timing profiles were generated from asynchronous cultures using fluorescence-activated cell sorting. Applying this technique we show that the replication profiles of haploid and diploid cells are indistinguishable, indicating that both cell types use the same cohort of origins with the same activities. Finally, increasing sequencing depth allowed the direct measure of replication dynamics from an exponentially growing culture. This is the first time this approach, called marker frequency analysis, has been successfully applied to a eukaryote. These data provide a high-resolution resource and methodological framework for studying genome biology.


Assuntos
Replicação do DNA , Genoma , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Origem de Replicação , Saccharomyces cerevisiae/genética
10.
J Exp Bot ; 66(9): 2437-47, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25788730

RESUMO

Plants have evolved complex mechanisms to balance the efficient use of absorbed light energy in photosynthesis with the capacity to use that energy in assimilation, so avoiding potential damage from excess light. This is particularly important under natural light, which can vary according to weather, solar movement and canopy movement. Photosynthetic acclimation is the means by which plants alter their leaf composition and structure over time to enhance photosynthetic efficiency and productivity. However there is no empirical or theoretical basis for understanding how leaves track historic light levels to determine acclimation status, or whether they do this accurately. We hypothesized that in fluctuating light (varying in both intensity and frequency), the light-response characteristics of a leaf should adjust (dynamically acclimate) to maximize daily carbon gain. Using a framework of mathematical modelling based on light-response curves, we have analysed carbon-gain dynamics under various light patterns. The objective was to develop new tools to quantify the precision with which photosynthesis acclimates according to the environment in which plants exist and to test this tool on existing data. We found an inverse relationship between the optimal maximum photosynthetic capacity and the frequency of low to high light transitions. Using experimental data from the literature we were able to show that the observed patterns for acclimation were consistent with a strategy towards maximizing daily carbon gain. Refinement of the model will further determine the precision of acclimation.


Assuntos
Aclimatação , Carbono/metabolismo , Luz , Fotossíntese , Meio Ambiente , Modelos Teóricos , Folhas de Planta
11.
NAR Genom Bioinform ; 5(3): lqad077, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37608801

RESUMO

Tracking cells as they divide and progress through differentiation is a fundamental step in understanding many biological processes, such as the development of organisms and progression of diseases. In this study, we investigate a machine learning approach to reconstruct lineage trees in experimental systems based on mutating synthetic genomic barcodes. We refine previously proposed methodology by embedding information of higher level relationships between cells and single-cell barcode values into a feature space. We test performance of the algorithm on shallow trees (up to 100 cells) and deep trees (up to 10 000 cells). Our proposed algorithm can improve tree reconstruction accuracy in comparison to reconstructions based on a maximum parsimony method, but this comes at a higher computational time requirement.

12.
Front Plant Sci ; 14: 1116367, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968397

RESUMO

Acclimation of photosynthesis to light intensity (photoacclimation) takes days to achieve and so naturally fluctuating light presents a potential challenge where leaves may be exposed to light conditions that are beyond their window of acclimation. Experiments generally have focused on unchanging light with a relatively fixed combination of photosynthetic attributes to confer higher efficiency in those conditions. Here a controlled LED experiment and mathematical modelling was used to assess the acclimation potential of contrasting Arabidopsis thaliana genotypes following transfer to a controlled fluctuating light environment, designed to present frequencies and amplitudes more relevant to natural conditions. We hypothesize that acclimation of light harvesting, photosynthetic capacity and dark respiration are controlled independently. Two different ecotypes were selected, Wassilewskija-4 (Ws), Landsberg erecta (Ler) and a GPT2 knock out mutant on the Ws background (gpt2-), based on their differing abilities to undergo dynamic acclimation i.e. at the sub-cellular or chloroplastic scale. Results from gas exchange and chlorophyll content indicate that plants can independently regulate different components that could optimize photosynthesis in both high and low light; targeting light harvesting in low light and photosynthetic capacity in high light. Empirical modelling indicates that the pattern of 'entrainment' of photosynthetic capacity by past light history is genotype-specific. These data show flexibility of photoacclimation and variation useful for plant improvement.

13.
J Am Med Inform Assoc ; 31(1): 35-44, 2023 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-37604111

RESUMO

OBJECTIVE: Applications of machine learning in healthcare are of high interest and have the potential to improve patient care. Yet, the real-world accuracy of these models in clinical practice and on different patient subpopulations remains unclear. To address these important questions, we hosted a community challenge to evaluate methods that predict healthcare outcomes. We focused on the prediction of all-cause mortality as the community challenge question. MATERIALS AND METHODS: Using a Model-to-Data framework, 345 registered participants, coalescing into 25 independent teams, spread over 3 continents and 10 countries, generated 25 accurate models all trained on a dataset of over 1.1 million patients and evaluated on patients prospectively collected over a 1-year observation of a large health system. RESULTS: The top performing team achieved a final area under the receiver operator curve of 0.947 (95% CI, 0.942-0.951) and an area under the precision-recall curve of 0.487 (95% CI, 0.458-0.499) on a prospectively collected patient cohort. DISCUSSION: Post hoc analysis after the challenge revealed that models differ in accuracy on subpopulations, delineated by race or gender, even when they are trained on the same data. CONCLUSION: This is the largest community challenge focused on the evaluation of state-of-the-art machine learning methods in a healthcare system performed to date, revealing both opportunities and pitfalls of clinical AI.


Assuntos
Crowdsourcing , Medicina , Humanos , Inteligência Artificial , Aprendizado de Máquina , Algoritmos
14.
Nucleic Acids Res ; 38(17): 5623-33, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20457753

RESUMO

All chromosomes must be completely replicated prior to cell division, a requirement that demands the activation of a sufficient number of appropriately distributed DNA replication origins. Here we investigate how the activity of multiple origins on each chromosome is coordinated to ensure successful replication. We present a stochastic model for whole chromosome replication where the dynamics are based upon the parameters of individual origins. Using this model we demonstrate that mean replication time at any given chromosome position is determined collectively by the parameters of all origins. Combining parameter estimation with extensive simulations we show that there is a range of model parameters consistent with mean replication data, emphasising the need for caution in interpreting such data. In contrast, the replicated-fraction at time points through S phase contains more information than mean replication time data and allowed us to use our model to uniquely estimate many origin parameters. These estimated parameters enable us to make a number of predictions that showed agreement with independent experimental data, confirming that our model has predictive power. In summary, we demonstrate that a stochastic model can recapitulate experimental observations, including those that might be interpreted as deterministic such as ordered origin activation times.


Assuntos
Cromossomos/metabolismo , Replicação do DNA , Modelos Genéticos , Algoritmos , Cromossomos Fúngicos/metabolismo , Simulação por Computador , Período de Replicação do DNA , Cinética , Origem de Replicação , Saccharomyces cerevisiae/genética , Processos Estocásticos
15.
Spat Spatiotemporal Epidemiol ; 41: 100391, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35691660

RESUMO

Infectious diseases remain one of the major causes of human mortality and suffering. Mathematical models have been established as an important tool for capturing the features that drive the spread of the disease, predicting the progression of an epidemic and hence guiding the development of strategies to control it. Another important area of epidemiological interest is the development of geostatistical methods for the analysis of data from spatially referenced prevalence surveys. Maps of prevalence are useful, not only for enabling a more precise disease risk stratification, but also for guiding the planning of more reliable spatial control programmes by identifying affected areas. Despite the methodological advances that have been made in each area independently, efforts to link transmission models and geostatistical maps have been limited. Motivated by this fact, we developed a Bayesian approach that combines fine-scale geostatistical maps of disease prevalence with transmission models to provide quantitative, spatially-explicit projections of the current and future impact of control programs against a disease. These estimates can then be used at a local level to identify the effectiveness of suggested intervention schemes and allow investigation of alternative strategies. The methodology has been applied to lymphatic filariasis in East Africa to provide estimates of the impact of different intervention strategies against the disease.


Assuntos
Filariose Linfática , África Oriental/epidemiologia , Teorema de Bayes , Filariose Linfática/epidemiologia , Filariose Linfática/prevenção & controle , Humanos , Modelos Estatísticos , Modelos Teóricos , Prevalência
16.
Phys Rev Lett ; 107(6): 068103, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21902372

RESUMO

We present a mathematical model for the spatial dynamics of DNA replication. Using this model we determine the probability distribution for the time at which each chromosomal position is replicated. From this we show, contrary to previous reports, that mean replication time curves cannot be used to directly determine origin parameters. We demonstrate that the stochastic nature of replication dynamics leaves a clear signature in experimentally measured population average data, and we show that the width of the activation time probability distribution can be inferred from this data. Our results compare favorably with experimental measurements in Saccharomyces cerevisae.


Assuntos
Replicação do DNA , DNA Fúngico/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromossomos Fúngicos/metabolismo , Período de Replicação do DNA
17.
Phys Rev E ; 103(5-1): 052410, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34134194

RESUMO

Cell plating, the spreading out of a liquid suspension of cells on a surface followed by colony growth, is a common laboratory procedure in microbiology. Despite this, the exact impact of its parameters on colony growth has not been extensively studied. A common protocol involves the shaking of glass beads within a Petri dish containing solid growth media. We investigated the effects of multiple parameters in this protocol: the number of beads, the shape of movement, and the number of movements. Standard suspensions of Escherichia coli were spread while varying these parameters to assess their impact on colony growth. Results were assessed by a variety of metrics: the number of colonies, the mean distance between closest colonies, and the variability and uniformity of their spatial distribution. Finally, we devised a mathematical model of shifting billiard to explain the heterogeneities in the observed spatial patterns. Exploring the parameters that affect the most fundamental techniques in microbiology allows us to better understand their function, giving us the ability to precisely control their outputs for our exact needs.


Assuntos
Meios de Cultura , Escherichia coli , Movimento
18.
Microorganisms ; 9(3)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804003

RESUMO

Zoontic visceral leishmaniasis (ZVL) due to Leishmania infantum is a potentially fatal protozoan parasitic disease of humans and dogs. In the Americas, dogs are the reservoir and the sand fly, Lutzomyia longipalpis, the principal vector. A synthetic version of the male sand fly produced sex-aggregation pheromone attracts both female and male conspecifics to co-located insecticide, reducing both reservoir infection and vector abundance. However the effect of the synthetic pheromone on the vector's "choice" of host (human, animal reservoir, or dead-end host) for blood feeding in the presence of the pheromone is less well understood. In this study, we developed a modelling framework to allow us to predict the relative attractiveness of the synthetic pheromone and potential alterations in host choice. Our analysis indicates that the synthetic pheromone can attract 53% (95% CIs: 39%-86%) of host-seeking female Lu. longipalpis and thus it out-competes competing host odours. Importantly, the results suggest that the synthetic pheromone can lure vectors away from humans and dogs, such that when co-located with insecticide, it provides protection against transmission leading to human and canine ZVL.

19.
Cell Syst ; 12(8): 810-826.e4, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34146472

RESUMO

The recent advent of CRISPR and other molecular tools enabled the reconstruction of cell lineages based on induced DNA mutations and promises to solve the ones of more complex organisms. To date, no lineage reconstruction algorithms have been rigorously examined for their performance and robustness across dataset types and number of cells. To benchmark such methods, we decided to organize a DREAM challenge using in vitro experimental intMEMOIR recordings and in silico data for a C. elegans lineage tree of about 1,000 cells and a Mus musculus tree of 10,000 cells. Some of the 22 approaches submitted had excellent performance, but structural features of the trees prevented optimal reconstructions. Using smaller sub-trees as training sets proved to be a good approach for tuning algorithms to reconstruct larger trees. The simulation and reconstruction methods here generated delineate a potential way forward for solving larger cell lineage trees such as in mouse.


Assuntos
Benchmarking , Caenorhabditis elegans , Algoritmos , Animais , Caenorhabditis elegans/genética , Linhagem da Célula/genética , Simulação por Computador , Camundongos
20.
Proc Math Phys Eng Sci ; 476(2238): 20200376, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32821237

RESUMO

COVID-19 is characterized by an infectious pre-symptomatic period, when newly infected individuals can unwittingly infect others. We are interested in what benefits facemasks could offer as a non-pharmaceutical intervention, especially in the settings where high-technology interventions, such as contact tracing using mobile apps or rapid case detection via molecular tests, are not sustainable. Here, we report the results of two mathematical models and show that facemask use by the public could make a major contribution to reducing the impact of the COVID-19 pandemic. Our intention is to provide a simple modelling framework to examine the dynamics of COVID-19 epidemics when facemasks are worn by the public, with or without imposed 'lock-down' periods. Our results are illustrated for a number of plausible values for parameter ranges describing epidemiological processes and mechanistic properties of facemasks, in the absence of current measurements for these values. We show that, when facemasks are used by the public all the time (not just from when symptoms first appear), the effective reproduction number, Re , can be decreased below 1, leading to the mitigation of epidemic spread. Under certain conditions, when lock-down periods are implemented in combination with 100% facemask use, there is vastly less disease spread, secondary and tertiary waves are flattened and the epidemic is brought under control. The effect occurs even when it is assumed that facemasks are only 50% effective at capturing exhaled virus inoculum with an equal or lower efficiency on inhalation. Facemask use by the public has been suggested to be ineffective because wearers may touch their faces more often, thus increasing the probability of contracting COVID-19. For completeness, our models show that facemask adoption provides population-level benefits, even in circumstances where wearers are placed at increased risk. At the time of writing, facemask use by the public has not been recommended in many countries, but a recommendation for wearing face-coverings has just been announced for Scotland. Even if facemask use began after the start of the first lock-down period, our results show that benefits could still accrue by reducing the risk of the occurrence of further COVID-19 waves. We examine the effects of different rates of facemask adoption without lock-down periods and show that, even at lower levels of adoption, benefits accrue to the facemask wearers. These analyses may explain why some countries, where adoption of facemask use by the public is around 100%, have experienced significantly lower rates of COVID-19 spread and associated deaths. We conclude that facemask use by the public, when used in combination with physical distancing or periods of lock-down, may provide an acceptable way of managing the COVID-19 pandemic and re-opening economic activity. These results are relevant to the developed as well as the developing world, where large numbers of people are resource poor, but fabrication of home-made, effective facemasks is possible. A key message from our analyses to aid the widespread adoption of facemasks would be: 'my mask protects you, your mask protects me'.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa