Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Hum Brain Mapp ; 39(3): 1246-1262, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29222818

RESUMO

Higher cognition may require the globally coordinated integration of specialized brain regions into functional networks. A collection of structural cortical hubs-referred to as the rich club-has been hypothesized to support task-specific functional integration. In the present paper, we use a whole-cortex model to estimate directed interactions between 68 cortical regions from functional magnetic resonance imaging activity for four different tasks (reflecting different cognitive domains) and resting state. We analyze the state-dependent input and output effective connectivity (EC) of the structural rich club and relate these to whole-cortex dynamics and network reconfigurations. We find that the cortical rich club exhibits an increase in outgoing EC during task performance as compared with rest while incoming connectivity remains constant. Increased outgoing connectivity targets a sparse set of peripheral regions with specific regions strongly overlapping between tasks. At the same time, community detection analyses reveal massive reorganizations of interactions among peripheral regions, including those serving as target of increased rich club output. This suggests that while peripheral regions may play a role in several tasks, their concrete interplay might nonetheless be task-specific. Furthermore, we observe that whole-cortex dynamics are faster during task as compared with rest. The decoupling effects usually accompanying faster dynamics appear to be counteracted by the increased rich club outgoing EC. Together our findings speak to a gating mechanism of the rich club that supports fast-paced information exchange among relevant peripheral regions in a task-specific and goal-directed fashion, while constantly listening to the whole network.


Assuntos
Córtex Cerebral/fisiologia , Processos Mentais/fisiologia , Adulto , Mapeamento Encefálico , Córtex Cerebral/diagnóstico por imagem , Circulação Cerebrovascular , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Modelos Neurológicos , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Oxigênio/sangue , Descanso
2.
Neuroimage ; 146: 561-574, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27989843

RESUMO

Cognition is hypothesized to require the globally coordinated, functionally relevant integration of otherwise segregated information processing carried out by specialized brain regions. Studies of the macroscopic connectome as well as recent neuroimaging and neuromodeling research have suggested a densely connected collective of cortical hubs, termed the rich club, to provide a central workspace for such integration. In order for rich club regions to fulfill this role they must dispose of a dynamic mechanism by which they can actively shape networks of brain regions whose information processing needs to be integrated. A potential candidate for such a mechanism comes in the form of oscillations which might be employed to establish communication channels among relevant brain regions. We explore this possibility using an integrative approach combining whole-brain computational modeling with neuroimaging, wherein we investigate the local dynamics model brain regions need to exhibit in order to fit (dynamic) network behavior empirically observed for resting as well as a range of task states. We find that rich club regions largely exhibit oscillations during task performance but not during rest. Furthermore, oscillations exhibited by rich club regions can harmonize a set of asynchronous brain regions thus supporting functional coupling among them. These findings are in line with the hypothesis that the rich club can actively shape integration using oscillations.


Assuntos
Ondas Encefálicas , Córtex Cerebral/fisiologia , Conectoma , Modelos Neurológicos , Adulto , Encéfalo/fisiologia , Sincronização Cortical , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Masculino , Vias Neurais/fisiologia , Adulto Jovem
3.
Brain Struct Funct ; 225(4): 1261-1275, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32144496

RESUMO

Regional connectivity-based parcellation (rCBP) is a widely used procedure for investigating the structural and functional differentiation within a region of interest (ROI) based on its long-range connectivity. No standardized software or guidelines currently exist for applying rCBP, making the method only accessible to those who develop their own tools. As such, there exists a discrepancy between the laboratories applying the procedure each with their own software solutions, making it difficult to compare and interpret the results. Here, we outline an rCBP procedure accompanied by an open source software package called CBPtools. CBPtools is a Python (version 3.5+) package that allows users to run an extensively evaluated rCBP analysis workflow on a given ROI. It currently supports two modalities: resting-state functional connectivity and structural connectivity based on diffusion-weighted imaging, along with support for custom connectivity matrices. Analysis parameters are customizable and the workflow can be scaled to a large number of subjects using a parallel processing environment. Parcellation results with corresponding validity metrics are provided as textual and graphical output. Thus, CBPtools provides a simple plug-and-play, yet customizable way to conduct rCBP analyses. By providing an open-source software we hope to promote reproducible and comparable rCBP analyses and, importantly, make the rCBP procedure readily available. Here, we demonstrate the utility of CBPtools using a voluminous data set on an average compute-cluster infrastructure by performing rCBP on three ROIs prominently featured in parcellation literature.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Software , Acesso à Informação , Adulto , Encéfalo/fisiologia , Feminino , Humanos , Masculino , Vias Neurais/anatomia & histologia
4.
Front Hum Neurosci ; 14: 113, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32351371

RESUMO

"Locked-in" patients lose their ability to communicate naturally due to motor system dysfunction. Brain-computer interfacing offers a solution for their inability to communicate by enabling motor-independent communication. Straightforward and convenient in-session communication is essential in clinical environments. The present study introduces a functional near-infrared spectroscopy (fNIRS)-based binary communication paradigm that requires limited preparation time and merely nine optodes. Eighteen healthy participants performed two mental imagery tasks, mental drawing and spatial navigation, to answer yes/no questions during one of two auditorily cued time windows. Each of the six questions was answered five times, resulting in five trials per answer. This communication paradigm thus combines both spatial (two different mental imagery tasks, here mental drawing for "yes" and spatial navigation for "no") and temporal (distinct time windows for encoding a "yes" and "no" answer) fNIRS signal features for information encoding. Participants' answers were decoded in simulated real-time using general linear model analysis. Joint analysis of all five encoding trials resulted in an average accuracy of 66.67 and 58.33% using the oxygenated (HbO) and deoxygenated (HbR) hemoglobin signal respectively. For half of the participants, an accuracy of 83.33% or higher was reached using either the HbO signal or the HbR signal. For four participants, effective communication with 100% accuracy was achieved using either the HbO or HbR signal. An explorative analysis investigated the differentiability of the two mental tasks based solely on spatial fNIRS signal features. Using multivariate pattern analysis (MVPA) group single-trial accuracies of 58.33% (using 20 training trials per task) and 60.56% (using 40 training trials per task) could be obtained. Combining the five trials per run using a majority voting approach heightened these MVPA accuracies to 62.04 and 75%. Additionally, an fNIRS suitability questionnaire capturing participants' physical features was administered to explore its predictive value for evaluating general data quality. Obtained questionnaire scores correlated significantly (r = -0.499) with the signal-to-noise of the raw light intensities. While more work is needed to further increase decoding accuracy, this study shows the potential of answer encoding using spatiotemporal fNIRS signal features or spatial fNIRS signal features only.

5.
Neurosci Bull ; 36(10): 1123-1136, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32700142

RESUMO

The human striatum is essential for both low- and high-level functions and has been implicated in the pathophysiology of various prevalent disorders, including Parkinson's disease (PD) and schizophrenia (SCZ). It is known to consist of structurally and functionally divergent subdivisions. However, previous parcellations are based on a single neuroimaging modality, leaving the extent of the multi-modal organization of the striatum unknown. Here, we investigated the organization of the striatum across three modalities-resting-state functional connectivity, probabilistic diffusion tractography, and structural covariance-to provide a holistic convergent view of its structure and function. We found convergent clusters in the dorsal, dorsolateral, rostral, ventral, and caudal striatum. Functional characterization revealed the anterior striatum to be mainly associated with cognitive and emotional functions, while the caudal striatum was related to action execution. Interestingly, significant structural atrophy in the rostral and ventral striatum was common to both PD and SCZ, but atrophy in the dorsolateral striatum was specifically attributable to PD. Our study revealed a cross-modal convergent organization of the striatum, representing a fundamental topographical model that can be useful for investigating structural and functional variability in aging and in clinical conditions.


Assuntos
Conectoma , Corpo Estriado , Adulto , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa