Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Natl Acad Sci U S A ; 109(38): 15366-71, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22949638

RESUMO

With frigid temperatures and virtually no in situ productivity, the deep oceans, Earth's largest ecosystem, are especially energy-deprived systems. Our knowledge of the effects of this energy limitation on all levels of biological organization is very incomplete. Here, we use the Metabolic Theory of Ecology to examine the relative roles of carbon flux and temperature in influencing metabolic rate, growth rate, lifespan, body size, abundance, biomass, and biodiversity for life on the deep seafloor. We show that the relative impacts of thermal and chemical energy change across organizational scales. Results suggest that individual metabolic rates, growth, and turnover proceed as quickly as temperature-influenced biochemical kinetics allow but that chemical energy limits higher-order community structure and function. Understanding deep-sea energetics is a pressing problem because of accelerating climate change and the general lack of environmental regulatory policy for the deep oceans.


Assuntos
Biodiversidade , Biomassa , Metabolismo Energético , Biologia Marinha/métodos , Tamanho Corporal , Mudança Climática , Ecologia , Ecossistema , Meio Ambiente , Modelos Estatísticos , Oceanos e Mares , Plantas/metabolismo , Análise de Regressão , Temperatura , Microbiologia da Água
2.
Biol Lett ; 7(5): 718-22, 2011 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-21429909

RESUMO

Consensus is growing among ecologists that energy and the factors influencing its utilization can play overarching roles in regulating large-scale patterns of biodiversity. The deep sea--the world's largest ecosystem--has simplified energetic inputs and thus provides an excellent opportunity to study how these processes structure spatial diversity patterns. Two factors influencing energy availability and use are chemical (productive) and thermal energy, here represented as seafloor particulate organic carbon (POC) flux and temperature. We related regional patterns of benthic molluscan diversity in the North Atlantic to these factors, to conduct an explicit test of species-energy relationships in the modern day fauna of the deep ocean. Spatial regression analyses in a model-averaging framework indicated that POC flux had a substantially higher relative importance than temperature for both gastropods and protobranch bivalves, although high correlations between variables prevented definitive interpretation. This contrasts with recent research on temporal variation in fossil diversity from deep-sea cores, where temperature is generally a more significant predictor. These differences may reflect the scales of time and space at which productivity and temperature operate, or differences in body size; but both lines of evidence implicate processes influencing energy utilization as major determinants of deep-sea species diversity.


Assuntos
Moluscos/fisiologia , Animais , Oceano Atlântico , Biodiversidade , Ecossistema , Moluscos/classificação
3.
Evolution ; 59(7): 1479-91, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16153033

RESUMO

The deep sea is the largest ecosystem on Earth. Recent exploration has revealed that it supports a highly diverse and endemic benthic invertebrate fauna, yet the evolutionary processes that generate this remarkable species richness are virtually unknown. Environmental heterogeneity, topographic complexity, and morphological divergence all tend to decrease with depth, suggesting that the potential for population differentiation may decrease with depth. To test this hypothesis, we use mitochondrial DNA (16S rRNA gene) to examine patterns of population differentiation in four species of protobranch bivalves (Nuculoma similis, Deminucula atacellana, Malletia abyssorum, and Ledella ultima) distributed along a depth gradient in the western North Atlantic. We sequenced 268 individuals from formalin-fixed samples and found 45 haplotypes. The level of sequence divergence among haplotypes within species was similar, but shifted from between populations at bathyal depths to within populations at abyssal depths. Levels of population structure as measured by phiST were considerably greater in the upper bathyal species (N. similis = 0.755 and D. atacellana = 0.931; 530-3834 m) than in the lower bathyal/abyssal species (M. abyssorum = 0.071 and L. ultima = 0.045; 2864-4970 m). Pairwise genetic distances among the samples within each species also decreased with depth. Population trees (UPGMA) based on modified coancestry coefficients and nested clade analysis both indicated strong population-level divergence in the two upper bathyal species but little for the deeper species. The population genetic structure in these protobranch bivalves parallels depth-related morphological divergence observed in deep-sea gastropods. The higher level of genetic and morphological divergence, coupled with the strong biotic and abiotic heterogeneity at bathyal depths, suggests this region may be an active area of species formation. We suggest that the steep, topographically complex, and dynamic bathyal zone, which stretches as a narrow band along continental margins, plays a more important role in the evolutionary radiation of the deep-sea fauna than the much more extensive abyss.


Assuntos
Bivalves/genética , Meio Ambiente , Variação Genética , Genética Populacional , Filogenia , Análise de Variância , Animais , Oceano Atlântico , Sequência de Bases , Análise por Conglomerados , Geografia , Haplótipos/genética , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie
4.
Am Nat ; 165(2): 163-78, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15729648

RESUMO

Bathymetric gradients of biodiversity in the deep-sea benthos constitute a major class of large-scale biogeographic phenomena. They are typically portrayed and interpreted as variation in alpha diversity (the number of species recovered in individual samples) along depth transects. Here, we examine the depth ranges of deep-sea gastropods and bivalves in the eastern and western North Atlantic. This approach shows that the abyssal molluscan fauna largely represents deeper range extensions for a subset of bathyal species. Most abyssal species have larval dispersal, and adults live at densities that appear to be too low for successful reproduction. These patterns suggest a new explanation for abyssal biodiversity. For many species, bathyal and abyssal populations may form a source-sink system in which abyssal populations are regulated by a balance between chronic extinction arising from vulnerabilities to Allee effects and immigration from bathyal sources. An increased significance of source-sink dynamics with depth may be driven by the exponential decrease in organic carbon flux to the benthos with increasing depth and distance from productive coastal systems. The abyss, which is the largest marine benthic environment, may afford more limited ecological and evolutionary opportunity than the bathyal zone.


Assuntos
Biodiversidade , Bivalves/fisiologia , Gastrópodes/fisiologia , Modelos Biológicos , Migração Animal , Animais , Oceano Atlântico , Larva/fisiologia , Biologia Marinha , Densidade Demográfica
5.
Evolution ; 58(2): 338-48, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15068350

RESUMO

Studies of deep-sea biodiversity focus almost exclusively on geographic patterns of alpha-diversity. Few include the morphological or ecological properties of species that indicate their actual roles in community assembly. Here, we explore morphological disparity of shell architecture in gastropods from lower bathyal and abyssal environments of the western North Atlantic as a new dimension of deep-sea biodiversity. The lower bathyal-abyssal transition parallels a gradient of decreasing species diversity with depth and distance from land. Morphological disparity measures how the variety of body plans in a taxon fills a morphospace. We examine disparity in shell form by constructing both empirical (eigenshape analysis) and theoretical (Schindel's modification of Raup's model) morphospaces. The two approaches provide very consistent results. The centroids of lower bathyal and abyssal morphospaces are statistically indistinguishable. The absolute volumes of lower bathyal morphospaces exceed those of the abyss; however, when the volumes are standardized to a common number of species they are not significantly different. The abyssal morphospaces are simply more sparsely occupied. In terms of the variety of basic shell types, abyssal species show the same disparity values as random subsets of the lower bathyal fauna. Abyssal species possess no evident evolutionary innovation. There are, however, conspicuous changes in the relative abundance of shell forms between the two assemblages. The lower bathyal fauna contains a fairly equable mix of species abundances, trophic modes, and shell types. The abyssal group is numerically dominated by species that are deposit feeders with compact unsculptured shells.


Assuntos
Biodiversidade , Ecossistema , Meio Ambiente , Modelos Biológicos , Caramujos/anatomia & histologia , Animais , Oceano Atlântico , Biometria , Pesos e Medidas Corporais , Geografia , Especificidade da Espécie
6.
PLoS One ; 5(12): e15323, 2010 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-21209928

RESUMO

A comprehensive seafloor biomass and abundance database has been constructed from 24 oceanographic institutions worldwide within the Census of Marine Life (CoML) field projects. The machine-learning algorithm, Random Forests, was employed to model and predict seafloor standing stocks from surface primary production, water-column integrated and export particulate organic matter (POM), seafloor relief, and bottom water properties. The predictive models explain 63% to 88% of stock variance among the major size groups. Individual and composite maps of predicted global seafloor biomass and abundance are generated for bacteria, meiofauna, macrofauna, and megafauna (invertebrates and fishes). Patterns of benthic standing stocks were positive functions of surface primary production and delivery of the particulate organic carbon (POC) flux to the seafloor. At a regional scale, the census maps illustrate that integrated biomass is highest at the poles, on continental margins associated with coastal upwelling and with broad zones associated with equatorial divergence. Lowest values are consistently encountered on the central abyssal plains of major ocean basins The shift of biomass dominance groups with depth is shown to be affected by the decrease in average body size rather than abundance, presumably due to decrease in quantity and quality of food supply. This biomass census and associated maps are vital components of mechanistic deep-sea food web models and global carbon cycling, and as such provide fundamental information that can be incorporated into evidence-based management.


Assuntos
Biomassa , Biologia Marinha/métodos , Algoritmos , Animais , Inteligência Artificial , Biodiversidade , Carbono/química , Biologia Computacional/métodos , Ecossistema , Modelos Biológicos , Oceanos e Mares , Análise de Regressão
7.
Mol Ecol ; 15(3): 639-51, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16499691

RESUMO

The deep-sea soft-sediment environment hosts a diverse and highly endemic fauna of uncertain origin. We know little about how this fauna evolved because geographic patterns of genetic variation, the essential information for inferring patterns of population differentiation and speciation are poorly understood. Using formalin-fixed specimens from archival collections, we quantify patterns of genetic variation in the protobranch bivalve Deminucula atacellana, a species widespread throughout the Atlantic Ocean at bathyal and abyssal depths. Samples were taken from 18 localities in the North American, West European and Argentine basins. A hypervariable region of mitochondrial 16S rDNA was amplified by polymerase chain reaction (PCR) and sequenced from 130 individuals revealing 21 haplotypes. Except for several important exceptions, haplotypes are unique to each basin. Overall gene diversity is high (h = 0.73) with pronounced population structure (Phi(ST) = 0.877) and highly significant geographic associations (P < 0.0001). Sequences cluster into four major clades corresponding to differences in geography and depth. Genetic divergence was much greater among populations at different depths within the same basin, than among those at similar depths but separated by thousands of kilometres. Isolation by distance probably explains much of the interbasin variation. Depth-related divergence may reflect historical patterns of colonization or strong environmental selective gradients. Broadly distributed deep-sea organisms can possess highly genetically divergent populations, despite the lack of any morphological divergence.


Assuntos
Bivalves/genética , Variação Genética , Animais , Oceano Atlântico , DNA Mitocondrial/genética , DNA Ribossômico/genética , Geografia , Haplótipos , Filogenia , Análise de Sequência de DNA
8.
Evolution ; 53(4): 1298-1301, 1999 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28565515

RESUMO

The shift to smaller body size in marine invertebrates at the deep-sea threshold and size-depth clines within the deep-sea ecosystem are global biogeographic phenomena that remain poorly understood. We present the first standardized measurements of larval and adult size among ecologically and phylogenetically similar species across a broad and continuous depth range, using the largest family of deep-sea gastropods (the Turridae). Size at all life stages increases significantly with depth from the upper bathyal region to the abyssal plain. These consistent clines may result from selection favoring larger size at greater depths because of its metabolic and competitive advantages. The unusually small size of deep-sea mollusks, in general, may represent an independent evolutionary process that favors invasion by inshore taxa composed of small organisms.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa