Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
N Engl J Med ; 390(1): 55-62, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38169490

RESUMO

Antiamyloid antibodies have been used to reduce cerebral amyloid-beta (Aß) load in patients with Alzheimer's disease. We applied focused ultrasound with each of six monthly aducanumab infusions to temporarily open the blood-brain barrier with the goal of enhancing amyloid removal in selected brain regions in three participants over a period of 6 months. The reduction in the level of Aß was numerically greater in regions treated with focused ultrasound than in the homologous regions in the contralateral hemisphere that were not treated with focused ultrasound, as measured by fluorine-18 florbetaben positron-emission tomography. Cognitive tests and safety evaluations were conducted over a period of 30 to 180 days after treatment. (Funded by the Harry T. Mangurian, Jr. Foundation and the West Virginia University Rockefeller Neuroscience Institute.).


Assuntos
Doença de Alzheimer , Barreira Hematoencefálica , Terapia por Ultrassom , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/análise , Barreira Hematoencefálica/metabolismo , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/uso terapêutico
2.
Proc Natl Acad Sci U S A ; 121(11): e2316365121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38451949

RESUMO

Visceral signals are constantly processed by our central nervous system, enable homeostatic regulation, and influence perception, emotion, and cognition. While visceral processes at the cortical level have been extensively studied using non-invasive imaging techniques, very few studies have investigated how this information is processed at the single neuron level, both in humans and animals. Subcortical regions, relaying signals from peripheral interoceptors to cortical structures, are particularly understudied and how visceral information is processed in thalamic and subthalamic structures remains largely unknown. Here, we took advantage of intraoperative microelectrode recordings in patients undergoing surgery for deep brain stimulation (DBS) to investigate the activity of single neurons related to cardiac and respiratory functions in three subcortical regions: ventral intermedius nucleus (Vim) and ventral caudalis nucleus (Vc) of the thalamus, and subthalamic nucleus (STN). We report that the activity of a large portion of the recorded neurons (about 70%) was modulated by either the heartbeat, the cardiac inter-beat interval, or the respiration. These cardiac and respiratory response patterns varied largely across neurons both in terms of timing and their kind of modulation. A substantial proportion of these visceral neurons (30%) was responsive to more than one of the tested signals, underlining specialization and integration of cardiac and respiratory signals in STN and thalamic neurons. By extensively describing single unit activity related to cardiorespiratory function in thalamic and subthalamic neurons, our results highlight the major role of these subcortical regions in the processing of visceral signals.


Assuntos
Estimulação Encefálica Profunda , Núcleo Subtalâmico , Animais , Humanos , Tálamo/fisiologia , Neurônios/fisiologia , Microeletrodos
3.
Neurotherapeutics ; 21(3): e00366, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38688105

RESUMO

Psychiatric disorders are among the leading contributors to global disease burden and disability. A significant portion of patients with psychiatric disorders remain treatment-refractory to best available therapy. With insights from the neurocircuitry of psychiatric disorders and extensive experience of neuromodulation with deep brain stimulation (DBS) in movement disorders, DBS is increasingly being considered to modulate the neural network in psychiatric disorders. Currently, obsessive-compulsive disorder (OCD) is the only U.S. FDA (United States Food and Drug Administration) approved DBS indication for psychiatric disorders. Medically refractory depression, addiction, and other psychiatric disorders are being explored for DBS neuromodulation. Studies evaluating DBS for psychiatric disorders are promising but lack larger, controlled studies. This paper presents a brief review and the current state of DBS and other neurosurgical neuromodulation therapies for OCD and other psychiatric disorders. We also present a brief review of MR-guided Focused Ultrasound (MRgFUS), a novel form of neurosurgical neuromodulation, which can target deep subcortical structures similar to DBS, but in a noninvasive fashion. Early experiences of neurosurgical neuromodulation therapies, including MRgFUS neuromodulation are encouraging in psychiatric disorders; however, they remain investigational. Currently, DBS and VNS are the only FDA approved neurosurgical neuromodulation options in properly selected cases of OCD and depression, respectively.


Assuntos
Estimulação Encefálica Profunda , Transtornos Mentais , Humanos , Estimulação Encefálica Profunda/métodos , Transtornos Mentais/terapia , Transtorno Obsessivo-Compulsivo/terapia , Procedimentos Neurocirúrgicos/métodos , Procedimentos Neurocirúrgicos/tendências
4.
Appl Neuropsychol Adult ; : 1-8, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140183

RESUMO

INTRODUCTION: Memory deficits are the primary symptom in amnestic Mild Cognitive Impairment (aMCI); however, executive function (EF) deficits are common. The current study examined EF in aMCI based upon amyloid status (A+/A-) and regional atrophy in signature areas of Alzheimer's disease (AD). METHOD: Participants included 110 individuals with aMCI (A+ = 66; A- = 44) and 33 cognitively healthy participants (HP). EF was assessed using four neuropsychological assessment measures. The cortical thickness of the AD signature areas was calculated using structural MRI data. RESULTS: A + had greater EF deficits and cortical atrophy relative to A - in the supramarginal gyrus and superior parietal lobule. A - had greater EF deficits relative to HP, but no difference in signature area cortical thickness. DISCUSSION: The current study found that the degree of EF deficits in aMCI are a function of amyloid status and cortical thinning in the parietal cortex.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa