Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Appl Opt ; 55(5): 1054-60, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26906375

RESUMO

A simple scheme for interrogating a 5 m long photonics device and its potential applications to quasi-distributed fiber sensing is proposed. The sensor consists of an array of 500 identical, very weak fiber Bragg gratings (FBGs). The gratings are 9 mm long and have been serially written in cascade along a single optical fiber. The measurement system is based on a combination of optical time domain reflectometry and frequency scanning of the interrogating pulse. The time-frequency analysis is performed by launching an optical pulse into the sensor and retrieving and analyzing the back-reflected signal. The measurement of the temperature, length, and position of spot events along the sensors is demonstrated with good accuracy. As both spatial and temperature resolution of the method depend on the input pulse duration, the system performance can be controlled and optimized by properly choosing the temporal duration of the interrogating pulse. A spatial resolution of 9 mm (ultimately dictated by one grating length) has been obtained with an 80 ps optical pulse, while a temperature resolution of less than 0.42 K has been demonstrated using a 500 ps incident pulse. The sensor proposed proves to be simple, robust, and polarization insensitive and alleviates the instrumentation complexity for distributed sensing applications.

2.
Opt Express ; 22(23): 28584-95, 2014 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-25402100

RESUMO

A technique to enhance the response and performance of Brillouin distributed fiber sensors is proposed and experimentally validated. The method consists in creating a multi-frequency pump pulse interacting with a matching multi-frequency continuous-wave probe. To avoid nonlinear cross-interaction between spectral lines, the method requires that the distinct pump pulse components and temporal traces reaching the photo-detector are subject to wavelength-selective delaying. This way the total pump and probe powers launched into the fiber can be incrementally boosted beyond the thresholds imposed by nonlinear effects. As a consequence of the multiplied pump-probe Brillouin interactions occurring along the fiber, the sensor response can be enhanced in exact proportion to the number of spectral components. The method is experimentally validated in a 50 km-long distributed optical fiber sensor augmented to 3 pump-probe spectral pairs, demonstrating a signal-to-noise ratio enhancement of 4.8 dB.


Assuntos
Fenômenos Ópticos , Óptica e Fotônica/instrumentação , Processamento de Sinais Assistido por Computador , Técnicas Biossensoriais , Fibras Ópticas , Razão Sinal-Ruído , Análise Espectral , Fatores de Tempo
3.
Opt Express ; 21(23): 28175-81, 2013 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-24514329

RESUMO

A novel technique for interrogating photonic sensors based on long fiber Bragg gratings (FBGs) is presented and experimentally demonstrated, dedicated to detect the presence and the precise location of several spot events. The principle of operation is based on a technique used to analyze microwave photonics (MWP) filters. The long FBGs are used as quasi-distributed sensors. Several hot-spots can be detected along the FBG with a spatial accuracy under 0.5 mm using a modulator and a photo-detector (PD) with a modest bandwidth of less than 1 GHz. The proposed interrogation system is intrinsically robust against environmental changes.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa