Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(2): 105659, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38237678

RESUMO

Bacterial lifestyles depend on conditions encountered during colonization. The transition between planktonic and biofilm growth is dependent on the intracellular second messenger c-di-GMP. High c-di-GMP levels driven by diguanylate cyclases (DGCs) activity favor biofilm formation, while low levels were maintained by phosphodiesterases (PDE) encourage planktonic lifestyle. The activity of these enzymes can be modulated by stimuli-sensing domains such as Per-ARNT-Sim (PAS). In Pseudomonas aeruginosa, more than 40 PDE/DGC are involved in c-di-GMP homeostasis, including 16 dual proteins possessing both canonical DGC and PDE motifs, that is, GGDEF and EAL, respectively. It was reported that deletion of the EAL/GGDEF dual enzyme PA0285, one of five c-di-GMP-related enzymes conserved across all Pseudomonas species, impacts biofilms. PA0285 is anchored in the membrane and carries two PAS domains. Here, we confirm that its role is conserved in various P. aeruginosa strains and in Pseudomonas putida. Deletion of PA0285 impacts the early stage of colonization, and RNA-seq analysis suggests that expression of cupA fimbrial genes is involved. We demonstrate that the C-terminal portion of PA0285 encompassing the GGDEF and EAL domains binds GTP and c-di-GMP, respectively, but only exhibits PDE activity in vitro. However, both GGDEF and EAL domains are important for PA0285 PDE activity in vivo. Complementation of the PA0285 mutant strain with a copy of the gene encoding the C-terminal GGDEF/EAL portion in trans was not as effective as complementation with the full-length gene. This suggests the N-terminal transmembrane and PAS domains influence the PDE activity in vivo, through modulating the protein conformation.


Assuntos
Proteínas de Bactérias , Pseudomonas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Pseudomonas/enzimologia
2.
J Biol Chem ; 300(2): 105618, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176652

RESUMO

The F1FO-ATP synthase engine is essential for viability and growth of nontuberculous mycobacteria (NTM) by providing the biological energy ATP and keeping ATP homeostasis under hypoxic stress conditions. Here, we report the discovery of the diarylquinoline TBAJ-5307 as a broad spectrum anti-NTM inhibitor, targeting the FO domain of the engine and preventing rotation and proton translocation. TBAJ-5307 is active at low nanomolar concentrations against fast- and slow-growing NTM as well as clinical isolates by depleting intrabacterial ATP. As demonstrated for the fast grower Mycobacterium abscessus, the compound is potent in vitro and in vivo, without inducing toxicity. Combining TBAJ-5307 with anti-NTM antibiotics or the oral tebipenem-avibactam pair showed attractive potentiation. Furthermore, the TBAJ-5307-tebipenem-avibactam cocktail kills the pathogen, suggesting a novel oral combination for the treatment of NTM lung infections.


Assuntos
Antibacterianos , Diarilquinolinas , Inibidores Enzimáticos , Infecções por Mycobacterium não Tuberculosas , Micobactérias não Tuberculosas , Humanos , Trifosfato de Adenosina , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos , Carbapenêmicos , Inibidores Enzimáticos/farmacologia , Testes de Sensibilidade Microbiana , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Diarilquinolinas/farmacologia
3.
Appl Environ Microbiol ; 89(11): e0109523, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37882527

RESUMO

IMPORTANCE: Persistence of V. cholerae in the aquatic environment contributes to the fatal diarrheal disease cholera, which remains a global health burden. In the environment, bacteria face predation pressure by heterotrophic protists such as the free-living amoeba A. castellanii. This study explores how a mutant of V. cholerae adapts to acquire essential nutrients and survive predation. Here, we observed that up-regulation of iron acquisition genes and genes regulating resistance to oxidative stress enhances pathogen fitness. Our data show that V. cholerae can defend predation to overcome nutrient limitation and oxidative stress, resulting in an enhanced survival inside the protozoan hosts.


Assuntos
Amoeba , Cólera , Vibrio cholerae , Animais , Vibrio cholerae/genética , Comportamento Predatório , Cólera/microbiologia , Ferro
4.
Appl Environ Microbiol ; 89(2): e0174122, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36656007

RESUMO

Mixed species biofilms exhibit increased tolerance to numerous stresses compared to single species biofilms. The aim of this study was to examine the effect of grazing by the heterotrophic protist, Tetrahymena pyriformis, on a mixed species biofilm consisting of Pseudomonas aeruginosa, Pseudomonas protegens, and Klebsiella pneumoniae. Protozoan grazing significantly reduced the single species K. pneumoniae biofilm, and the single species P. protegens biofilm was also sensitive to grazing. In contrast, P. aeruginosa biofilms were resistant to predation. This resistance protected the otherwise sensitive members of the mixed species biofilm consortium. Rhamnolipids produced by P. aeruginosa were shown to be the primary toxic factor for T. pyriformis. However, a rhamnolipid-deficient mutant of P. aeruginosa (P. aeruginosa ΔrhlAB) maintained grazing resistance in the biofilm, suggesting the presence of at least one additional protective mechanism. P. aeruginosa with a deleted gene encoding the type III secretion system also resisted grazing. A transposon library was generated in the ΔrhlAB mutant to identify the additional factor involved in community biofilm protection. Results indicated that the Pseudomonas Quinolone Signal (PQS), a quorum sensing signaling molecule, was likely responsible for this effect. We confirmed this observation by showing that double mutants of ΔrhlAB and genes in the PQS biosynthetic operon lost grazing protection. We also showed that PQS was directly toxic to T. pyriformis. This study demonstrates that residing in a mixed species biofilm can be an advantageous strategy for grazing sensitive bacterial species, as P. aeruginosa confers community protection from protozoan grazing through multiple mechanisms. IMPORTANCE Biofilms have been shown to protect bacterial cells from predation by protists. Biofilm studies have traditionally used single species systems, which have provided information on the mechanisms and regulation of biofilm formation and dispersal, and the effects of predation on these biofilms. However, biofilms in nature are comprised of multiple species. To better understand how multispecies biofilms are impacted by predation, a model mixed-species biofilm was here exposed to protozoan predation. We show that the grazing sensitive strains K. pneumonia and P. protogens gained associational resistance from the grazing resistant P. aeruginosa. Resistance was due to the secretion of rhamnolipids and quorum sensing molecule PQS. This work highlights the importance of using mixed species systems.


Assuntos
Biofilmes , Comportamento Predatório , Animais , Percepção de Quorum , Eucariotos , Pseudomonas aeruginosa/fisiologia
5.
Infect Immun ; 90(8): e0006122, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35913171

RESUMO

Pseudomonas aeruginosa is generally believed to establish biofilm-associated infections under the regulation of the secondary messenger c-di-GMP. To evaluate P. aeruginosa biofilm physiology during ocular infections, comparative transcriptomic analysis was performed on wild-type P. aeruginosa PAO1, a ΔwspF mutant strain (high c-di-GMP levels), and a plac-yhjH-containing strain (low c-di-GMP levels) from mouse corneal infection, as well as in vitro biofilm and planktonic cultures. The c-di-GMP content in P. aeruginosa during corneal infection was monitored using a fluorescent c-di-GMP reporter strain. Biofilm-related genes were induced in in vivo PAO1 compared to in vitro planktonic bacteria. Several diguanylate cyclases and phosphodiesterases were commonly regulated in in vivo PAO1 and in vitro biofilm compared to in vitro planktonic bacteria. Several exopolysaccharide genes and motility genes were induced and downregulated, respectively, in in vivo PAO1 and the in vivo ΔwspF mutant compared to the in vivo plac-yhjH-containing strain. Elevation of c-di-GMP levels in P. aeruginosa began as early as 2 h postinfection. The ΔwspF mutant was less susceptible to host clearance than the plac-yhjH-containing strain and could suppress host immune responses. The type III secretion system (T3SS) was induced in in vivo PAO1 compared to in vitro biofilm bacteria. A ΔwspF mutant with a defective T3SS was more susceptible to host clearance than a ΔwspF mutant with a functional T3SS. Our study suggests that elevated intracellular c-di-GMP levels and T3SS activity in P. aeruginosa are necessary for establishment of infection and modulation of host immune responses in mouse cornea.


Assuntos
Pseudomonas aeruginosa , Sistemas de Secreção Tipo III , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Camundongos , Pseudomonas aeruginosa/genética , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo
6.
Appl Environ Microbiol ; 88(5): e0232221, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35020451

RESUMO

The opportunistic pathogen Pseudomonas aeruginosa is ubiquitous in the environment, and in humans, it is capable of causing acute or chronic infections. In the natural environment, predation by bacterivorous protozoa represents a primary threat to bacteria. Here, we determined the impact of long-term exposure of P. aeruginosa to predation pressure. P. aeruginosa persisted when coincubated with the bacterivorous Acanthamoeba castellanii for extended periods and produced genetic and phenotypic variants. Sequencing of late-stage amoeba-adapted P. aeruginosa isolates demonstrated single nucleotide polymorphisms within genes that encode known virulence factors, and this correlated with a reduction in expression of virulence traits. Virulence for the nematode Caenorhabditis elegans was attenuated in late-stage amoeba-adapted P. aeruginosa compared to early-stage amoeba-adapted and nonadapted counterparts. Further, late-stage amoeba-adapted P. aeruginosa showed increased competitive fitness and enhanced survival in amoebae as well as in macrophage and neutrophils. Interestingly, our findings indicate that the selection imposed by amoebae resulted in P. aeruginosa isolates with reduced virulence and enhanced fitness, similar to those recovered from chronic cystic fibrosis infections. Thus, predation by protozoa and long-term colonization of the human host may represent similar environments that select for similar losses of gene function. IMPORTANCE Pseudomonas aeruginosa is an opportunistic pathogen that causes both acute infections in plants and animals, including humans, and chronic infections in immunocompromised and cystic fibrosis patients. This bacterium is commonly found in soils and water, where bacteria are constantly under threat of being consumed by bacterial predators, e.g., protozoa. To escape being killed, bacteria have evolved a suite of mechanisms that protect them from being consumed or digested. Here, we examined the effect of long-term predation on the genotypes and phenotypes expressed by P. aeruginosa. We show that long-term coincubation with protozoa gave rise to mutations that resulted in P. aeruginosa becoming less pathogenic. This is particularly interesting as similar mutations arise in bacteria associated with chronic infections. Importantly, the genetic and phenotypic traits possessed by late-stage amoeba-adapted P. aeruginosa are similar to those observed in isolates obtained from chronic cystic fibrosis infections. This notable overlap in adaptation to different host types suggests similar selection pressures among host cell types as well as similar adaptation strategies.


Assuntos
Amoeba , Fibrose Cística , Infecções por Pseudomonas , Animais , Fibrose Cística/microbiologia , Humanos , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa , Virulência
7.
Appl Environ Microbiol ; 88(2): e0166521, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34731052

RESUMO

Vibrio vulnificus is an opportunistic human pathogen and autochthonous inhabitant of coastal marine environments, where the bacterium is under constant predation by heterotrophic protists or protozoans. As a result of this selection pressure, genetic variants with antipredation mechanisms are selected for and persist in the environment. Such natural variants may also be pathogenic to animal or human hosts, making it important to understand these defense mechanisms. To identify antipredator strategies, 13 V. vulnificus strains of different genotypes isolated from diverse environments were exposed to predation by the ciliated protozoan Tetrahymena pyriformis, and only strain ENV1 was resistant to predation. Further investigation of the cell-free supernatant showed that ENV1 acidifies the environment by the excretion of organic acids, which are toxic to T. pyriformis. As this predation resistance was dependent on the availability of iron, transcriptomes of V. vulnificus in iron-replete and iron-deplete conditions were compared. This analysis revealed that ENV1 ferments pyruvate and the resultant acetyl-CoA leads to acetate synthesis under aerobic conditions, a hallmark of overflow metabolism. The anaerobic respiration global regulator arcA was upregulated when iron was available. An ΔarcA deletion mutant of ENV1 accumulated less acetate and, importantly, was sensitive to grazing by T. pyriformis. Based on the transcriptome response and quantification of metabolites, we conclude that ENV1 has adapted to overflow metabolism and has lost a control switch that shifts metabolism from acetate excretion to acetate assimilation, enabling it to excrete acetate continuously. We show that overflow metabolism and the acetate switch contribute to prey-predator interactions. IMPORTANCE Bacteria in the environment, including Vibrio spp., interact with protozoan predators. To defend against predation, bacteria evolve antipredator mechanisms ranging from changing morphology, biofilm formation, and secretion of toxins or virulence factors. Some of these adaptations may result in strains that are pathogenic to humans. Therefore, it is important to study predator defense strategies of environmental bacteria. V. vulnificus thrives in coastal waters and infects humans. Very little is known about the defense mechanisms V. vulnificus expresses against predation. Here, we show that a V. vulnificus strain (ENV1) has rewired the central carbon metabolism, enabling the production of excess organic acid that is toxic to the protozoan predator T. pyriformis. This is a previously unknown mechanism of predation defense that protects against protozoan predators.


Assuntos
Tetrahymena pyriformis , Vibrio vulnificus , Acetatos , Animais , Genótipo , Comportamento Predatório
8.
Molecules ; 27(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35163933

RESUMO

The use of nitric oxide (NO) is emerging as a promising, novel approach for the treatment of antibiotic resistant bacteria and biofilm infections. Depending on the concentration, NO can induce biofilm dispersal, increase bacteria susceptibility to antibiotic treatment, and induce cell damage or cell death via the formation of reactive oxygen or reactive nitrogen species. The use of NO is, however, limited by its reactivity, which can affect NO delivery to its target site and result in off-target effects. To overcome these issues, and enable spatial or temporal control over NO release, various strategies for the design of NO-releasing materials, including the incorporation of photo-activable, charge-switchable, or bacteria-targeting groups, have been developed. Other strategies have focused on increased NO storage and delivery by encapsulation or conjugation of NO donors within a single polymeric framework. This review compiles recent developments in NO drugs and NO-releasing materials designed for applications in antimicrobial or anti-biofilm treatment and discusses limitations and variability in biological responses in response to the use of NO for bacterial eradiation.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Doadores de Óxido Nítrico/farmacologia , Bactérias/metabolismo , Biofilmes/efeitos dos fármacos
9.
Molecules ; 27(5)2022 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35268822

RESUMO

Natural products derived from marine sponges have exhibited bioactivity and, in some cases, serve as potent quorum sensing inhibitory agents that prevent biofilm formation and attenuate virulence factor expression by pathogenic microorganisms. In this study, the inhibitory activity of the psammaplin-type compounds, psammaplin A (1) and bisaprasin (2), isolated from the marine sponge, Aplysinellarhax, are evaluated in quorum sensing inhibitory assays based on the Pseudomonas aeruginosa PAO1 lasB-gfp(ASV) and rhlA-gfp(ASV) biosensor strains. The results indicate that psammaplin A (1) showed moderate inhibition on lasB-gfp expression, but significantly inhibited the QS-gene promoter, rhlA-gfp, with IC50 values at 14.02 µM and 4.99 µM, respectively. In contrast, bisaprasin (2) displayed significant florescence inhibition in both biosensors, PAO1 lasB-gfp and rhlA-gfp, with IC50 values at 3.53 µM and 2.41 µM, respectively. Preliminary analysis suggested the importance of the bromotyrosine and oxime functionalities for QSI activity in these molecules. In addition, psammaplin A and bisaprasin downregulated elastase expression as determined by the standard enzymatic elastase assay, although greater reduction in elastase production was observed with 1 at 50 µM and 100 µM. Furthermore, the study revealed that bisaprasin (2) reduced biofilm formation in P. aeruginosa.


Assuntos
Pseudomonas aeruginosa , Percepção de Quorum , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Biofilmes , Dissulfetos , Elastase Pancreática , Pseudomonas aeruginosa/fisiologia , Tirosina/análogos & derivados , Fatores de Virulência/metabolismo
10.
BMC Microbiol ; 21(1): 91, 2021 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-33773594

RESUMO

BACKGROUND: Bacterial communities are responsible for biological nutrient removal and flocculation in engineered systems such as activated floccular sludge. Predators such as bacteriophage and protozoa exert significant predation pressure and cause bacterial mortality within these communities. However, the roles of bacteriophage and protozoan predation in impacting granulation process remain limited. Recent studies hypothesised that protozoa, particularly sessile ciliates, could have an important role in granulation as these ciliates were often observed in high abundance on surfaces of granules. Bacteriophages were hypothesized to contribute to granular stability through bacteriophage-mediated extracellular DNA release by lysing bacterial cells. This current study investigated the bacteriophage and protozoan communities throughout the granulation process. In addition, the importance of protozoan predation during granulation was also determined through chemical killing of protozoa in the floccular sludge. RESULTS: Four independent bioreactors seeded with activated floccular sludge were operated for aerobic granulation for 11 weeks. Changes in the phage, protozoa and bacterial communities were characterized throughout the granulation process. The filamentous phage, Inoviridae, increased in abundance at the initiation phase of granulation. However, the abundance shifted towards lytic phages during the maturation phase. In contrast, the abundance and diversity of protozoa decreased initially, possibly due to the reduction in settling time and subsequent washout. Upon the formation of granules, ciliated protozoa from the class Oligohymenophorea were the dominant group of protozoa based on metacommunity analysis. These protozoa had a strong, positive-correlation with the initial formation of compact aggregates prior to granule development. Furthermore, chemical inhibition of these ciliates in the floccular sludge delayed the initiation of granule formation. Analysis of the bacterial communities in the thiram treated sludge demonstrated that the recovery of 'Candidatus Accumulibacter' was positively correlated with the formation of compact aggregates and granules. CONCLUSION: Predation by bacteriophage and protozoa were positively correlated with the formation of aerobic granules. Increases in Inoviridae abundance suggested that filamentous phages may promote the structural formation of granules. Initiation of granules formation was delayed due to an absence of protozoa after chemical treatment. The presence of 'Candidatus Accumulibacter' was necessary for the formation of granules in the absence of protozoa.


Assuntos
Bactérias/metabolismo , Bacteriófagos/fisiologia , Ecossistema , Eucariotos/fisiologia , Microbiota
11.
BMC Microbiol ; 21(1): 255, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34551714

RESUMO

BACKGROUND: Biofilms disperse in response to specific environmental cues, such as reduced oxygen concentration, changes in nutrient concentration and exposure to nitric oxide. Interestingly, biofilms do not completely disperse under these conditions, which is generally attributed to physiological heterogeneity of the biofilm. However, our results suggest that genetic heterogeneity also plays an important role in the non-dispersing population of P. aeruginosa in biofilms after nutrient starvation. RESULTS: In this study, 12.2% of the biofilm failed to disperse after 4 d of continuous starvation-induced dispersal. Cells were recovered from the dispersal phase as well as the remaining biofilm. For 96 h starved biofilms, rugose small colony variants (RSCV) were found to be present in the biofilm, but were not observed in the dispersal effluent. In contrast, wild type and small colony variants (SCV) were found in high numbers in the dispersal phase. Genome sequencing of these variants showed that most had single nucleotide mutations in genes associated with biofilm formation, e.g. in wspF, pilT, fha1 and aguR. Complementation of those mutations restored starvation-induced dispersal from the biofilms. Because c-di-GMP is linked to biofilm formation and dispersal, we introduced a c-di-GMP reporter into the wild-type P. aeruginosa and monitored green fluorescent protein (GFP) expression before and after starvation-induced dispersal. Post dispersal, the microcolonies were smaller and significantly brighter in GFP intensity, suggesting the relative concentration of c-di-GMP per cell within the microcolonies was also increased. Furthermore, only the RSCV showed increased c-di-GMP, while wild type and SCV were no different from the parental strain. CONCLUSIONS: This suggests that while starvation can induce dispersal from the biofilm, it also results in strong selection for mutants that overproduce c-di-GMP and that fail to disperse in response to the dispersal cue, starvation.


Assuntos
Biofilmes , Carbono/metabolismo , Mutação , Nutrientes/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica
12.
Exp Eye Res ; 205: 108504, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33610601

RESUMO

Corneal infection caused by a bacteria Pseudomonas aeruginosa is common cause of ocular morbidity. Increasing antibiotic resistance by ocular P. aeruginosa is an emerging concern. In this study the resistome of ocular isolates of Pseudomonas aeruginosa clone ST308 isolated in India in 1997 (PA31, PA32, PA33, PA35 and PA37) and 2018 (PA198 and PA219) were investigated. All the isolates of ST308 had >95% nucleotide similarity. The isolates from 2018 had larger genomes, coding sequences, accessory and pan genes compared to the older isolates from 1997. The 2018 isolate PA219 was resistant to all antibiotics except polymyxin B, while the 2018 isolate PA198 was resistant to ciprofloxacin, levofloxacin, gentamicin and tobramycin. Among the isolates from 1997, five were resistant to gentamicin, tobramycin and ciprofloxacin, four were resistant to levofloxacin while two were resistant to polymyxin B. Twenty-four acquired resistance genes were present in the 2018 isolates compared to 11 in the historical isolates. All isolates contained genes encoding for aminoglycoside (aph(6)-Id, aph(3')-lIb, aph(3″)-Ib), beta-lactam (blaPAO), tetracycline (tet(G)), fosfomycin (fosA), chloramphenicol (catB7), sulphonamide (sul1), quaternary ammonium (qacEdelta1) and fluoroquinolone (crpP) resistance. Isolate PA198 possessed aph(3')-VI, rmtD2, qnrVC1, blaOXA-488, blaPME-1, while PA219 possessed aadA1, rmtB, qnrVC1, aac(6')-Ib-cr, blaTEM-1B, blaVIM-2, blaPAO-1, mph(E), mph(A), msr(E). In both recent isolates qnrVC1 was present in Tn3 transposon. In 219 blaTEM-1 was carried on a transposon and blaOXA-10 on a class 1 integron. There were no notable differences in the number of single nucleotide polymorphisms, but recent isolates carried more insertions and deletions in their genes. These findings suggest that genomes of P. aeruginosa ocular clonal strains with >95% nucleotide identity isolated twenty years apart had changed over time with the acquisition of resistance genes. The pattern of gene mutations also varied with more insertions and deletions in their chromosomal genes which confer resistance to antibiotics.


Assuntos
Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Genoma Bacteriano/genética , Polimorfismo de Nucleotídeo Único , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/isolamento & purificação , Antibacterianos/farmacologia , Doenças da Córnea/microbiologia , DNA Bacteriano/genética , Infecções Oculares Bacterianas/microbiologia , Humanos , Índia , Testes de Sensibilidade Microbiana , Tipagem Molecular , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Fatores de Tempo , Sequenciamento Completo do Genoma
13.
Bioorg Med Chem ; 31: 115967, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33434766

RESUMO

The Pseudomonas quinolone system (pqs) is one of the key quorum sensing systems in antibiotic-resistant P. aeruginosa and is responsible for the production of virulence factors and biofilm formation. Thus, synthetic small molecules that can target the PqsR (MvfR) receptor can be utilized as quorum sensing inhibitors to treat P. aeruginosa infections. In this study, we report the synthesis of novel thioether-linked dihydropyrrol-2-one (DHP) analogues as PqsR antagonists. Compound 7g containing a 2-mercaptopyridyl linkage effectively inhibited the pqs system with an IC50 of 32 µM in P. aeruginosa PAO1. Additionally, these inhibitors significantly reduced bacterial aggregation and biofilm formation without affecting planktonic growth. The molecular docking study suggest that these inhibitors bind with the ligand binding domain of the MvfR as a competitive antagonist.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Pirróis/farmacologia , Sulfetos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Pirróis/química , Percepção de Quorum/efeitos dos fármacos , Relação Estrutura-Atividade , Sulfetos/química
14.
J Nanobiotechnology ; 19(1): 291, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34579731

RESUMO

BACKGROUND: Treatment of bacterial biofilms are difficult and in many cases, expensive. Bacterial biofilms are naturally more resilient to antimicrobial agents than their free-living planktonic counterparts, rendering the community growth harder to control. The present work described the risks of long-term use of an important alternative antimicrobial, silver nanoparticles (NAg), for the first time, on the dominant mode of bacterial growth. RESULTS: NAg could inhibit the formation as well as eradicating an already grown biofilm of Pseudomonas aeruginosa, a pathogen notorious for its resilience to antibiotics. The biofilm-forming bacterium however, evolved a reduced sensitivity to the nanoparticle. Evidence suggests that survival is linked to the development of persister cells within the population. A similar adaptation was also seen upon prolonged exposures to ionic silver (Ag+). The persister population resumed normal growth after subsequent passage in the absence of silver, highlighting the potential risks of recurrent infections with long-term NAg (and Ag+) treatments of biofilm growth. The present study further observed a potential silver/antibiotic cross-resistance, whereby NAg (as well as Ag+) could not eradicate an already growing gentamicin-resistant P. aeruginosa biofilm. The phenomena is thought to result from the hindered biofilm penetration of the silver species. In contrast, both silver formulations inhibited biofilm formation of the resistant strain, presenting a promising avenue for the control of biofilm-forming antibiotic-resistant bacteria. CONCLUSION: The findings signify the importance to study the nanoparticle adaptation phenomena in the biofilm mode of bacterial growth, which are apparently unique to those already reported with the planktonic growth counterparts. This work sets the foundation for future studies in other globally significant bacterial pathogens when present as biofilms. Scientifically based strategies for management of pathogenic growth is necessary, particularly in this era of increasing antibiotic resistance.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Nanopartículas Metálicas/uso terapêutico , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana , Nanopartículas , Infecções por Pseudomonas , Pseudomonas aeruginosa/efeitos dos fármacos , Prata
15.
Environ Sci Technol ; 54(11): 6730-6740, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32390423

RESUMO

The mechanisms and impact of bacterial quorum sensing (QS) for the coordination of population-level behaviors are well studied under laboratory conditions. However, it is unclear how, in otherwise open environmental systems, QS signals accumulate to sufficient concentration to induce QS phenotypes, especially when quorum quenching (QQ) organisms are also present. We explore the impact of QQ activity on QS signaling in spatially organized biofilms in scenarios that mimic open systems of natural and engineered environments. Using a functionally differentiated biofilm system, we show that the extracellular matrix, local flow, and QQ interact to modulate communication. In still aqueous environments, convection facilitates signal dispersal while the matrix absorbs and relays signals to the cells. This process facilitates inter-biofilm communication even at low extracellular signal concentrations. Within the biofilm, the matrix further regulates the transport of the competing QS and QQ molecules, leading to heterogenous QS behavior. Importantly, only extracellular QQ enzymes can effectively control QS signaling, suggesting that the intracellular QQ enzymes may not have evolved to degrade environmental QS signals for competition.


Assuntos
Convecção , Percepção de Quorum , Bactérias , Biofilmes , Matriz Extracelular
16.
Spinal Cord ; 58(7): 755-767, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31953482

RESUMO

STUDY DESIGN: Randomised double-blind placebo-controlled trial. OBJECTIVES: Multi-resistant organism (MRO) colonisation is common in people with SCI. We aimed to determine whether Lactobacillus reuteri RC-14 + Lactobacillus GR-1 (RC14-GR1) and/or Lactobacillus rhamnosus GG + Bifidobacterium BB-12 (LGG-BB12) are effective in preventing or clearing MRO colonisation. SETTING: New South Wales, Australia. METHODS: The 207 SCI participants were randomised to one of four arms: (i) RC14-GR1 + LGG-BB12, (ii) RC14-GR1 + placebo, (iii) LGG-BB12 + placebo or (iv) double placebos for 6 months. Microbiological samples of nose, groin, urine and bowel were taken at baseline, 3 and 6 months. Analysis was conducted for the presence of methicillin-resistant Staphylococcus aureus (MRSA), multi-resistant gram-negative organisms (MRGNs) and vancomycin-resistant enterococcus (VRE). The outcomes were clearance of, or new colonisation with MRSA, MRGN, VRE or MROs and whether participants remained free of MRSA, MRGN, VRE or MROs throughout the study. Risk factors associated with an outcome were adjusted for using nominal or binary logistic regression. RESULTS: There was a significant reduction in new MRGN colonisation compared with placebo for participants treated with RC14-GR1 (OR 0.10, 95% CI, 0.01-0.88, P = 0.04), after allowing that inpatients were more likely to be newly colonised (OR 21.41, 95% CI, 3.98-115.13, P < 0.0001). Participants who intermittent self-catheterised (IMC) were more likely to remain MRO-free than those utilising SPC or IDCs (OR 2.80, 95% CI, 1.41-5.54, P = 0.009). CONCLUSIONS: Probiotics are ineffective at clearing MROs in people with SCI. However, RC14-GR1 is effective at preventing new colonisation with MRGNs. The use of IMC significantly improves the chance of remaining MRO-free.


Assuntos
Bifidobacterium , Farmacorresistência Bacteriana Múltipla , Lacticaseibacillus rhamnosus , Limosilactobacillus reuteri , Resistência a Meticilina , Microbiota , Probióticos/farmacologia , Traumatismos da Medula Espinal/microbiologia , Resistência a Vancomicina , Adulto , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , New South Wales , Avaliação de Resultados em Cuidados de Saúde , Probióticos/administração & dosagem
17.
Molecules ; 25(13)2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32646050

RESUMO

The Pseudomonas quinolone system (PQS) is one of the three major interconnected quorum sensing signaling systems in Pseudomonas aeruginosa. The virulence factors PQS and HHQ activate the transcription regulator PqsR (MvfR), which controls several activities in bacteria, including biofilm formation and upregulation of PQS biosynthesis. The enzyme anthraniloyl-CoA synthetase (PqsA) catalyzes the first and critical step in the biosynthesis of quinolones; therefore, it is an attractive target for the development of anti-virulence therapeutics against Pseudomonas resistance. Herein, we report the design and synthesis of novel triazole nucleoside-based anthraniloyl- adenosine monophosphate (AMP) mimics. These analogues had a major impact on the morphology of bacterial biofilms and caused significant reduction in bacterial aggregation and population density. However, the compounds showed only limited inhibition of PQS and did not exhibit any effect on pyocyanin production.


Assuntos
Monofosfato de Adenosina , Materiais Biomiméticos/farmacologia , Pseudomonas aeruginosa , Quinolonas/metabolismo , Fatores de Virulência/biossíntese , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Proteínas de Bactérias/metabolismo , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/patogenicidade , Fatores de Transcrição/metabolismo
18.
Environ Microbiol ; 21(9): 3472-3488, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31136079

RESUMO

Settlement of many benthic marine invertebrates is stimulated by bacterial biofilms, although it is not known if patterns of settlement reflect microbial communities that are specific to discrete habitats. Here, we characterized the taxonomic and functional gene diversity (16S rRNA gene amplicon and metagenomic sequencing analyses), as well as the specific bacterial abundances, in biofilms from diverse nearby and distant locations, both inshore and offshore, and tested them for their ability to induce settlement of the biofouling tubeworm Hydroides elegans, an inhabitant of bays and harbours around the world. We found that compositions of the bacterial biofilms were site specific, with the greatest differences between inshore and offshore sites. Further, biofilms were highly diverse in their taxonomic and functional compositions across inshore sites, while relatively low diversity was found at offshore sites. Hydroides elegans settled on all biofilms tested, with settlement strongly correlated with bacterial abundance. Bacterial density in biofilms was positively correlated with biofilm age. Our results suggest that the localized distribution of H. elegans is not determined by 'selection' to locations by specific bacteria, but it is more likely linked to the prevailing local ecology and oceanographic features that affect the development of dense biofilms and the occurrence of larvae.

19.
Appl Environ Microbiol ; 85(3)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30478229

RESUMO

While both iron and nitric oxide (NO) are redox-active environmental signals shown to regulate biofilm development, their interaction and roles in regulating biofilms have not been fully elucidated. In this study, exposure of Pseudomonas aeruginosa biofilms to exogenous NO inhibited the expression of iron acquisition-related genes and the production of the siderophore pyoverdine. Furthermore, supplementation of the culture medium with high levels of iron (100 µM) counteracted NO-induced biofilm dispersal by promoting the rapid attachment of planktonic cells. In the presence of iron, biofilms were found to disperse transiently to NO, while the freshly dispersed cells reattached rapidly within 15 min. This effect was not due to the scavenging of NO by free iron but involved a cellular response induced by iron that led to the elevated production of the exopolysaccharide Psl. Interestingly, most Psl remained on the substratum after treatment with NO, suggesting that dispersal involved changes in the interactions between Psl and P. aeruginosa cells. Taken together, our results suggest that iron and NO regulate biofilm development via different pathways, both of which include the regulation of Psl-mediated attachment. Moreover, the addition of an iron chelator worked synergistically with NO in the dispersal of biofilms.IMPORTANCE Nitric oxide (NO), which induces biofilm dispersal, is a promising strategy for biofilm control in both clinical and industrial contexts. However, competing environmental signals may reduce the efficacy of NO. The results presented here suggest that the presence of iron represents one such environmental cue that antagonizes the activity of NO as a biofilm-dispersing agent. Based on this understanding, we developed a strategy to enhance dispersal by combining NO with an iron-scavenging agent. Overall, this study links two important environmental signals, iron and NO, with their roles in biofilm development and suggests new ways for improving the use of NO in biofilm control strategies.


Assuntos
Biofilmes , Ferro/metabolismo , Óxido Nítrico/metabolismo , Pseudomonas aeruginosa/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Oligopeptídeos/biossíntese , Polissacarídeos Bacterianos/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento
20.
J Bacteriol ; 200(3)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29109186

RESUMO

RbdA is a positive regulator of biofilm dispersal of Pseudomonas aeruginosa Its cytoplasmic region (cRbdA) comprises an N-terminal Per-ARNT-Sim (PAS) domain followed by a diguanylate cyclase (GGDEF) domain and an EAL domain, whose phosphodiesterase activity is allosterically stimulated by GTP binding to the GGDEF domain. We report crystal structures of cRbdA and of two binary complexes: one with GTP/Mg2+ bound to the GGDEF active site and one with the EAL domain bound to the c-di-GMP substrate. These structures unveil a 2-fold symmetric dimer stabilized by a closely packed N-terminal PAS domain and a noncanonical EAL dimer. The autoinhibitory switch is formed by an α-helix (S-helix) immediately N-terminal to the GGDEF domain that interacts with the EAL dimerization helix (α6-E) of the other EAL monomer and maintains the protein in a locked conformation. We propose that local conformational changes in cRbdA upon GTP binding lead to a structure with the PAS domain and S-helix shifted away from the GGDEF-EAL domains, as suggested by small-angle X-ray scattering (SAXS) experiments. Domain reorientation should be facilitated by the presence of an α-helical lever (H-helix) that tethers the GGDEF and EAL regions, allowing the EAL domain to rearrange into an active dimeric conformation.IMPORTANCE Biofilm formation by bacterial pathogens increases resistance to antibiotics. RbdA positively regulates biofilm dispersal of Pseudomonas aeruginosa The crystal structures of the cytoplasmic region of the RbdA protein presented here reveal that two evolutionarily conserved helices play an important role in regulating the activity of RbdA, with implications for other GGDEF-EAL dual domains that are abundant in the proteomes of several bacterial pathogens. Thus, this work may assist in the development of small molecules that promote bacterial biofilm dispersal.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Pseudomonas aeruginosa/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Clonagem Molecular , Cristalografia , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Pseudomonas aeruginosa/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa