Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nature ; 560(7716): 49-54, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30013118

RESUMO

As global temperatures rise, large amounts of carbon sequestered in permafrost are becoming available for microbial degradation. Accurate prediction of carbon gas emissions from thawing permafrost is limited by our understanding of these microbial communities. Here we use metagenomic sequencing of 214 samples from a permafrost thaw gradient to recover 1,529 metagenome-assembled genomes, including many from phyla with poor genomic representation. These genomes reflect the diversity of this complex ecosystem, with genus-level representatives for more than sixty per cent of the community. Meta-omic analysis revealed key populations involved in the degradation of organic matter, including bacteria whose genomes encode a previously undescribed fungal pathway for xylose degradation. Microbial and geochemical data highlight lineages that correlate with the production of greenhouse gases and indicate novel syntrophic relationships. Our findings link changing biogeochemistry to specific microbial lineages involved in carbon processing, and provide key information for predicting the effects of climate change on permafrost systems.


Assuntos
Carbono/metabolismo , Congelamento , Metagenoma/genética , Pergelissolo/química , Pergelissolo/microbiologia , Microbiologia do Solo , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Fermentação , Fungos/genética , Fungos/isolamento & purificação , Fungos/metabolismo , Aquecimento Global , Metano/metabolismo , Polissacarídeos/metabolismo , Suécia , Xilose/metabolismo
2.
Glob Chang Biol ; 28(3): 950-968, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34727401

RESUMO

Permafrost thaw is a major potential feedback source to climate change as it can drive the increased release of greenhouse gases carbon dioxide (CO2 ) and methane (CH4 ). This carbon release from the decomposition of thawing soil organic material can be mitigated by increased net primary productivity (NPP) caused by warming, increasing atmospheric CO2 , and plant community transition. However, the net effect on C storage also depends on how these plant community changes alter plant litter quantity, quality, and decomposition rates. Predicting decomposition rates based on litter quality remains challenging, but a promising new way forward is to incorporate measures of the energetic favorability to soil microbes of plant biomass decomposition. We asked how the variation in one such measure, the nominal oxidation state of carbon (NOSC), interacts with changing quantities of plant material inputs to influence the net C balance of a thawing permafrost peatland. We found: (1) Plant productivity (NPP) increased post-thaw, but instead of contributing to increased standing biomass, it increased plant biomass turnover via increased litter inputs to soil; (2) Plant litter thermodynamic favorability (NOSC) and decomposition rate both increased post-thaw, despite limited changes in bulk C:N ratios; (3) these increases caused the higher NPP to cycle more rapidly through both plants and soil, contributing to higher CO2 and CH4  fluxes from decomposition. Thus, the increased C-storage expected from higher productivity was limited and the high global warming potential of CH4 contributed a net positive warming effect. Although post-thaw peatlands are currently C sinks due to high NPP offsetting high CO2 release, this status is very sensitive to the plant community's litter input rate and quality. Integration of novel bioavailability metrics based on litter chemistry, including NOSC, into studies of ecosystem dynamics, is needed to improve the understanding of controls on arctic C stocks under continued ecosystem transition.


Assuntos
Pergelissolo , Regiões Árticas , Dióxido de Carbono/análise , Ecossistema , Plantas , Solo/química
3.
Glob Chang Biol ; 28(17): 5007-5026, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35722720

RESUMO

The physical and chemical changes that accompany permafrost thaw directly influence the microbial communities that mediate the decomposition of formerly frozen organic matter, leading to uncertainty in permafrost-climate feedbacks. Although changes to microbial metabolism and community structure are documented following thaw, the generality of post-thaw assembly patterns across permafrost soils of the world remains uncertain, limiting our ability to predict biogeochemistry and microbial community responses to climate change. Based on our review of the Arctic microbiome, permafrost microbiology, and community ecology, we propose that Assembly Theory provides a framework to better understand thaw-mediated microbiome changes and the implications for community function and climate feedbacks. This framework posits that the prevalence of deterministic or stochastic processes indicates whether the community is well-suited to thrive in changing environmental conditions. We predict that on a short timescale and following high-disturbance thaw (e.g., thermokarst), stochasticity dominates post-thaw microbiome assembly, suggesting that functional predictions will be aided by detailed information about the microbiome. At a longer timescale and lower-intensity disturbance (e.g., active layer deepening), deterministic processes likely dominate, making environmental parameters sufficient for predicting function. We propose that the contribution of stochastic and deterministic processes to post-thaw microbiome assembly depends on the characteristics of the thaw disturbance, as well as characteristics of the microbial community, such as the ecological and phylogenetic breadth of functional guilds, their functional redundancy, and biotic interactions. These propagate across space and time, potentially providing a means for predicting the microbial forcing of greenhouse gas feedbacks to global climate change.


Assuntos
Microbiota , Pergelissolo , Regiões Árticas , Retroalimentação , Pergelissolo/química , Filogenia , Solo/química
4.
Environ Microbiol ; 23(1): 340-357, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33185945

RESUMO

Recent discoveries of mcr and mcr-like genes in genomes from diverse archaeal lineages suggest that methane metabolism is an ancient pathway with a complicated evolutionary history. One conventional view is that methanogenesis is an ancestral metabolism of the class Thermoplasmata. Through comparative genomic analysis of 12 Thermoplasmata metagenome-assembled genomes (MAGs) basal to the Methanomassiliicoccales, we show that these microorganisms do not encode the genes required for methanogenesis. Further analysis of 770 Ca. Thermoplasmatota genomes/MAGs found no evidence of mcrA homologues outside of the Methanomassiliicoccales. Together, these results suggest that methanogenesis was laterally acquired by an ancestor of the Methanomassiliicoccales. The 12 analysed MAGs include representatives from four orders basal to the Methanomassiliicoccales, including a high-quality MAG that likely represents a new order, Ca. Lunaplasma lacustris ord. nov. sp. nov. These MAGs are predicted to use diverse energy conservation pathways, including heterotrophy, sulfur and hydrogen metabolism, denitrification, and fermentation. Two lineages are widespread among anoxic, sedimentary environments, whereas Ca. Lunaplasma lacustris has thus far only been detected in alpine caves and subarctic lake sediments. These findings advance our understanding of the metabolic potential, ecology, and global distribution of the Thermoplasmata and provide insight into the evolutionary history of methanogenesis within the Ca. Thermoplasmatota.


Assuntos
Evolução Biológica , Euryarchaeota/metabolismo , Metano/metabolismo , Ecologia , Euryarchaeota/classificação , Euryarchaeota/genética , Euryarchaeota/isolamento & purificação , Metagenoma , Filogenia
5.
Nature ; 514(7523): 478-81, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25341787

RESUMO

Permafrost contains about 50% of the global soil carbon. It is thought that the thawing of permafrost can lead to a loss of soil carbon in the form of methane and carbon dioxide emissions. The magnitude of the resulting positive climate feedback of such greenhouse gas emissions is still unknown and may to a large extent depend on the poorly understood role of microbial community composition in regulating the metabolic processes that drive such ecosystem-scale greenhouse gas fluxes. Here we show that changes in vegetation and increasing methane emissions with permafrost thaw are associated with a switch from hydrogenotrophic to partly acetoclastic methanogenesis, resulting in a large shift in the δ(13)C signature (10-15‰) of emitted methane. We used a natural landscape gradient of permafrost thaw in northern Sweden as a model to investigate the role of microbial communities in regulating methane cycling, and to test whether a knowledge of community dynamics could improve predictions of carbon emissions under loss of permafrost. Abundance of the methanogen Candidatus 'Methanoflorens stordalenmirensis' is a key predictor of the shifts in methane isotopes, which in turn predicts the proportions of carbon emitted as methane and as carbon dioxide, an important factor for simulating the climate feedback associated with permafrost thaw in global models. By showing that the abundance of key microbial lineages can be used to predict atmospherically relevant patterns in methane isotopes and the proportion of carbon metabolized to methane during permafrost thaw, we establish a basis for scaling changing microbial communities to ecosystem isotope dynamics. Our findings indicate that microbial ecology may be important in ecosystem-scale responses to global change.


Assuntos
Atmosfera/química , Ecossistema , Congelamento , Metano/metabolismo , Microbiologia do Solo , Anaerobiose , Regiões Árticas , Dióxido de Carbono/metabolismo , Metano/análise , Suécia
6.
Proc Natl Acad Sci U S A ; 113(9): 2436-41, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26884177

RESUMO

Viruses are ecologically important, yet environmental virology is limited by dominance of unannotated genomic sequences representing taxonomic and functional "viral dark matter." Although recent analytical advances are rapidly improving taxonomic annotations, identifying functional dark matter remains problematic. Here, we apply paired metaproteomics and dsDNA-targeted metagenomics to identify 1,875 virion-associated proteins from the ocean. Over one-half of these proteins were newly functionally annotated and represent abundant and widespread viral metagenome-derived protein clusters (PCs). One primarily unannotated PC dominated the dataset, but structural modeling and genomic context identified this PC as a previously unidentified capsid protein from multiple uncultivated tailed virus families. Furthermore, four of the five most abundant PCs in the metaproteome represent capsid proteins containing the HK97-like protein fold previously found in many viruses that infect all three domains of life. The dominance of these proteins within our dataset, as well as their global distribution throughout the world's oceans and seas, supports prior hypotheses that this HK97-like protein fold is the most abundant biological structure on Earth. Together, these culture-independent analyses improve virion-associated protein annotations, facilitate the investigation of proteins within natural viral communities, and offer a high-throughput means of illuminating functional viral dark matter.


Assuntos
Proteômica , Proteínas Estruturais Virais/química , Biologia Marinha , Vírus/química
7.
Environ Microbiol ; 19(8): 3201-3218, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28574203

RESUMO

Biogenic production and release of methane (CH4 ) from thawing permafrost has the potential to be a strong source of radiative forcing. We investigated changes in the active layer microbial community of three sites representative of distinct permafrost thaw stages at a palsa mire in northern Sweden. The palsa site (intact permafrost and low radiative forcing signature) had a phylogenetically clustered community dominated by Acidobacteria and Proteobacteria. The bog (thawing permafrost and low radiative forcing signature) had lower alpha diversity and midrange phylogenetic clustering, characteristic of ecosystem disturbance affecting habitat filtering. Hydrogenotrophic methanogens and Acidobacteria dominated the bog shifting from palsa-like to fen-like at the waterline. The fen (no underlying permafrost, high radiative forcing signature) had the highest alpha, beta and phylogenetic diversity, was dominated by Proteobacteria and Euryarchaeota and was significantly enriched in methanogens. The Mire microbial network was modular with module cores consisting of clusters of Acidobacteria, Euryarchaeota or Xanthomonodales. Loss of underlying permafrost with associated hydrological shifts correlated to changes in microbial composition, alpha, beta and phylogenetic diversity associated with a higher radiative forcing signature. These results support the complex role of microbial interactions in mediating carbon budget changes and climate feedback in response to climate forcing.


Assuntos
Bactérias/isolamento & purificação , Pergelissolo/microbiologia , Filogenia , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Carbono/análise , Carbono/metabolismo , Clima , Ecossistema , Metano/análise , Metano/metabolismo , Consórcios Microbianos , Pergelissolo/química , Suécia
8.
Proc Natl Acad Sci U S A ; 111(16): 5819-24, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24711402

RESUMO

Carbon release due to permafrost thaw represents a potentially major positive climate change feedback. The magnitude of carbon loss and the proportion lost as methane (CH4) vs. carbon dioxide (CO2) depend on factors including temperature, mobilization of previously frozen carbon, hydrology, and changes in organic matter chemistry associated with environmental responses to thaw. While the first three of these effects are relatively well understood, the effect of organic matter chemistry remains largely unstudied. To address this gap, we examined the biogeochemistry of peat and dissolved organic matter (DOM) along a ∼40-y permafrost thaw progression from recently- to fully thawed sites in Stordalen Mire (68.35°N, 19.05°E), a thawing peat plateau in northern Sweden. Thaw-induced subsidence and the resulting inundation along this progression led to succession in vegetation types accompanied by an evolution in organic matter chemistry. Peat C/N ratios decreased whereas humification rates increased, and DOM shifted toward lower molecular weight compounds with lower aromaticity, lower organic oxygen content, and more abundant microbially produced compounds. Corresponding changes in decomposition along this gradient included increasing CH4 and CO2 production potentials, higher relative CH4/CO2 ratios, and a shift in CH4 production pathway from CO2 reduction to acetate cleavage. These results imply that subsidence and thermokarst-associated increases in organic matter lability cause shifts in biogeochemical processes toward faster decomposition with an increasing proportion of carbon released as CH4. This impact of permafrost thaw on organic matter chemistry could intensify the predicted climate feedbacks of increasing temperatures, permafrost carbon mobilization, and hydrologic changes.

9.
mSystems ; 9(1): e0069823, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38063415

RESUMO

While wetlands are major sources of biogenic methane (CH4), our understanding of resident microbial metabolism is incomplete, which compromises the prediction of CH4 emissions under ongoing climate change. Here, we employed genome-resolved multi-omics to expand our understanding of methanogenesis in the thawing permafrost peatland of Stordalen Mire in Arctic Sweden. In quadrupling the genomic representation of the site's methanogens and examining their encoded metabolism, we revealed that nearly 20% of the metagenome-assembled genomes (MAGs) encoded the potential for methylotrophic methanogenesis. Further, 27% of the transcriptionally active methanogens expressed methylotrophic genes; for Methanosarcinales and Methanobacteriales MAGs, these data indicated the use of methylated oxygen compounds (e.g., methanol), while for Methanomassiliicoccales, they primarily implicated methyl sulfides and methylamines. In addition to methanogenic methylotrophy, >1,700 bacterial MAGs across 19 phyla encoded anaerobic methylotrophic potential, with expression across 12 phyla. Metabolomic analyses revealed the presence of diverse methylated compounds in the Mire, including some known methylotrophic substrates. Active methylotrophy was observed across all stages of a permafrost thaw gradient in Stordalen, with the most frozen non-methanogenic palsa found to host bacterial methylotrophy and the partially thawed bog and fully thawed fen seen to house both methanogenic and bacterial methylotrophic activities. Methanogenesis across increasing permafrost thaw is thus revised from the sole dominance of hydrogenotrophic production and the appearance of acetoclastic at full thaw to consider the co-occurrence of methylotrophy throughout. Collectively, these findings indicate that methanogenic and bacterial methylotrophy may be an important and previously underappreciated component of carbon cycling and emissions in these rapidly changing wetland habitats.IMPORTANCEWetlands are the biggest natural source of atmospheric methane (CH4) emissions, yet we have an incomplete understanding of the suite of microbial metabolism that results in CH4 formation. Specifically, methanogenesis from methylated compounds is excluded from all ecosystem models used to predict wetland contributions to the global CH4 budget. Though recent studies have shown methylotrophic methanogenesis to be active across wetlands, the broad climatic importance of the metabolism remains critically understudied. Further, some methylotrophic bacteria are known to produce methanogenic by-products like acetate, increasing the complexity of the microbial methylotrophic metabolic network. Prior studies of Stordalen Mire have suggested that methylotrophic methanogenesis is irrelevant in situ and have not emphasized the bacterial capacity for metabolism, both of which we countered in this study. The importance of our findings lies in the significant advancement toward unraveling the broader impact of methylotrophs in wetland methanogenesis and, consequently, their contribution to the terrestrial global carbon cycle.


Assuntos
Euryarchaeota , Pergelissolo , Ecossistema , Bactérias/genética , Áreas Alagadas , Euryarchaeota/metabolismo , Metano/metabolismo
10.
Nat Microbiol ; 9(6): 1454-1466, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38806673

RESUMO

With rising global temperatures, permafrost carbon stores are vulnerable to microbial degradation. The enzyme latch theory states that polyphenols should accumulate in saturated peatlands due to diminished phenol oxidase activity, inhibiting resident microbes and promoting carbon stabilization. Pairing microbiome and geochemical measurements along a permafrost thaw-induced saturation gradient in Stordalen Mire, a model Arctic peatland, we confirmed a negative relationship between phenol oxidase expression and saturation but failed to support other trends predicted by the enzyme latch. To inventory alternative polyphenol removal strategies, we built CAMPER, a gene annotation tool leveraging polyphenol enzyme knowledge gleaned across microbial ecosystems. Applying CAMPER to genome-resolved metatranscriptomes, we identified genes for diverse polyphenol-active enzymes expressed by various microbial lineages under a range of redox conditions. This shifts the paradigm that polyphenols stabilize carbon in saturated soils and highlights the need to consider both oxic and anoxic polyphenol metabolisms to understand carbon cycling in changing ecosystems.


Assuntos
Ciclo do Carbono , Microbiota , Pergelissolo , Polifenóis , Microbiologia do Solo , Polifenóis/metabolismo , Pergelissolo/microbiologia , Bactérias/metabolismo , Bactérias/genética , Bactérias/enzimologia , Bactérias/classificação , Carbono/metabolismo , Oxirredução , Regiões Árticas , Monofenol Mono-Oxigenase/metabolismo , Monofenol Mono-Oxigenase/genética , Solo/química , Ecossistema
11.
PLoS One ; 17(2): e0252743, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35108267

RESUMO

The mechanisms controlling the extraordinarily slow carbon (C) mineralization rates characteristic of Sphagnum-rich peatlands ("bogs") are not fully understood, despite decades of research on this topic. Soluble phenolic compounds have been invoked as potentially significant contributors to bog peat recalcitrance due to their affinity to slow microbial metabolism and cell growth. Despite this potentially significant role, the effects of soluble phenolic compounds on bog peat C mineralization remain unclear. We analyzed this effect by manipulating the concentration of free soluble phenolics in anaerobic bog and fen peat incubations using water-soluble polyvinylpyrrolidone ("PVP"), a compound that binds with and inactivates phenolics, preventing phenolic-enzyme interactions. CO2 and CH4 production rates (end-products of anaerobic C mineralization) generally correlated positively with PVP concentration following Michaelis-Menten (M.M.) saturation functions. Using M.M. parameters, we estimated that the extent to which phenolics inhibit anaerobic CO2 production was significantly higher in the bog-62 ± 16%-than the fen-14 ± 4%. This difference was found to be more substantial with regards to methane production-wherein phenolic inhibition for the bog was estimated at 54 ± 19%, while the fen demonstrated no apparent inhibition. Consistent with this habitat difference, we observed significantly higher soluble phenolic content in bog vs. fen pore-water. Together, these findings suggest that soluble phenolics could contribute to bogs' extraordinary recalcitrance and high (relative to other peatland habitats) CO2:CH4 production ratios.


Assuntos
Carbono/metabolismo , Fenóis/química , Sphagnopsida/metabolismo , Anaerobiose , Carbono/química , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Cinética , Metano/química , Metano/metabolismo , Pergelissolo , Povidona/química , Sphagnopsida/química
12.
Sci Total Environ ; 820: 152757, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35031367

RESUMO

Peatlands are climate critical carbon (C) reservoirs that could become a C source under continued warming. A strong relationship between plant tissue chemistry and the soil organic matter (SOM) that fuels C gas emissions is inferred, but rarely examined at the molecular level. Here we compared Fourier transform infrared (FT-IR) spectroscopy measurements of solid phase functionalities in plants and SOM to ultra-high-resolution mass spectrometric analyses of plant and SOM water extracts across a palsa-bog-fen thaw and moisture gradient in an Arctic peatland. From these analyses we calculated the C oxidation state (NOSC), a measure which can be used to assess organic matter quality. Palsa plant extracts had the highest NOSC, indicating high quality, whereas extracts of Sphagnum, which dominated the bog, had the lowest NOSC. The percentage of plant compounds that are less bioavailable and accumulate in the peat, increases from palsa (25%) to fen (41%) to bog (47%), reflecting the pattern of percent Sphagnum cover. The pattern of NOSC in the plant extracts was consistent with the high number of consumed compounds in the palsa and low number of consumed compounds in the bog. However, in the FT-IR analysis of the solid phase bog peat, carbohydrate content was high implying high quality SOM. We explain this discrepancy as the result of low solubilization of bog SOM facilitated by the low pH in the bog which makes the solid phase carbohydrates less available to microbial decomposition. Plant-associated condensed aromatics, tannins, and lignin-like compounds declined in the unsaturated palsa peat indicating decomposition, but lignin-like compounds accumulated in the bog and fen peat where decomposition was presumably inhibited by the anaerobic conditions. A molecular-level comparison of the aboveground C sources and peat SOM demonstrates that climate-associated vegetation shifts in peatlands are important controls on the mechanisms underlying changing C gas emissions.


Assuntos
Pergelissolo , Sphagnopsida , Plantas , Solo/química , Espectroscopia de Infravermelho com Transformada de Fourier
13.
Environ Microbiol ; 13(1): 116-134, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20695878

RESUMO

To investigate the temporal, spatial and phylogenetic resolution of marine microbial community structure and variability, we designed and expanded a genome proxy array (an oligonucleotide microarray targeting marine microbial genome fragments and genomes), evaluated it against metagenomic sequencing, and applied it to time-series samples from the Monterey Bay. The expanded array targeted 268 microbial genotypes across much of the known diversity of cultured and uncultured marine microbes. The target abundances measured by the array were highly correlated to pyrosequence-based abundances (linear regression R(2) = 0.85-0.91, P < 0.0001). Fifty-seven samples from ∼4 years in Monterey Bay were examined with the array, spanning the photic zone (0 m), the base of the surface mixed layer (30 m) and the subphotic zone (200 m). A significant portion of the expanded genome proxy array's targets showed signal (95 out of 268 targets present in ≥ 1 sample). The multi-year community survey showed the consistent presence of a core group of common and abundant targeted taxa at each depth in Monterey Bay, higher variability among shallow than deep samples, and episodic occurrences of more transient marine genotypes. The abundance of the most dominant genotypes peaked after strong episodic upwelling events. The genome-proxy array's ability to track populations of closely related genotypes indicated population shifts within several abundant target taxa, with specific populations in some cases clustering by depth or oceanographic season. Although 51 cultivated organisms were targeted (representing 19% of the array) the majority of targets detected and of total target signal (85% and ∼92% respectively) were from uncultivated genotypes, often those derived from Monterey Bay. The array provided a relatively cost-effective approach (∼$15 per array) for surveying the natural history of uncultivated lineages.


Assuntos
Metagenoma , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Água do Mar/microbiologia , Microbiologia da Água , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , California , Análise por Conglomerados , DNA Bacteriano/isolamento & purificação , Ecossistema , Genes de RNAr , Genótipo
14.
Microbiome ; 9(1): 160, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34281625

RESUMO

BACKGROUND: Glacier ice archives information, including microbiology, that helps reveal paleoclimate histories and predict future climate change. Though glacier-ice microbes are studied using culture or amplicon approaches, more challenging metagenomic approaches, which provide access to functional, genome-resolved information and viruses, are under-utilized, partly due to low biomass and potential contamination. RESULTS: We expand existing clean sampling procedures using controlled artificial ice-core experiments and adapted previously established low-biomass metagenomic approaches to study glacier-ice viruses. Controlled sampling experiments drastically reduced mock contaminants including bacteria, viruses, and free DNA to background levels. Amplicon sequencing from eight depths of two Tibetan Plateau ice cores revealed common glacier-ice lineages including Janthinobacterium, Polaromonas, Herminiimonas, Flavobacterium, Sphingomonas, and Methylobacterium as the dominant genera, while microbial communities were significantly different between two ice cores, associating with different climate conditions during deposition. Separately, ~355- and ~14,400-year-old ice were subject to viral enrichment and low-input quantitative sequencing, yielding genomic sequences for 33 vOTUs. These were virtually all unique to this study, representing 28 novel genera and not a single species shared with 225 environmentally diverse viromes. Further, 42.4% of the vOTUs were identifiable temperate, which is significantly higher than that in gut, soil, and marine viromes, and indicates that temperate phages are possibly favored in glacier-ice environments before being frozen. In silico host predictions linked 18 vOTUs to co-occurring abundant bacteria (Methylobacterium, Sphingomonas, and Janthinobacterium), indicating that these phages infected ice-abundant bacterial groups before being archived. Functional genome annotation revealed four virus-encoded auxiliary metabolic genes, particularly two motility genes suggest viruses potentially facilitate nutrient acquisition for their hosts. Finally, given their possible importance to methane cycling in ice, we focused on Methylobacterium viruses by contextualizing our ice-observed viruses against 123 viromes and prophages extracted from 131 Methylobacterium genomes, revealing that the archived viruses might originate from soil or plants. CONCLUSIONS: Together, these efforts further microbial and viral sampling procedures for glacier ice and provide a first window into viral communities and functions in ancient glacier environments. Such methods and datasets can potentially enable researchers to contextualize new discoveries and begin to incorporate glacier-ice microbes and their viruses relative to past and present climate change in geographically diverse regions globally. Video Abstract.


Assuntos
Bacteriófagos , Microbiota , Bactérias/genética , Bacteriófagos/genética , Camada de Gelo , Metagenômica
15.
Nat Commun ; 12(1): 5815, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34611153

RESUMO

Northern post-glacial lakes are significant, increasing sources of atmospheric carbon through ebullition (bubbling) of microbially-produced methane (CH4) from sediments. Ebullitive CH4 flux correlates strongly with temperature, reflecting that solar radiation drives emissions. However, here we show that the slope of the temperature-CH4 flux relationship differs spatially across two post-glacial lakes in Sweden. We compared these CH4 emission patterns with sediment microbial (metagenomic and amplicon), isotopic, and geochemical data. The temperature-associated increase in CH4 emissions was greater in lake middles-where methanogens were more abundant-than edges, and sediment communities were distinct between edges and middles. Microbial abundances, including those of CH4-cycling microorganisms and syntrophs, were predictive of porewater CH4 concentrations. Results suggest that deeper lake regions, which currently emit less CH4 than shallower edges, could add substantially to CH4 emissions in a warmer Arctic and that CH4 emission predictions may be improved by accounting for spatial variations in sediment microbiota.


Assuntos
Metano/análise , Regiões Árticas , Sedimentos Geológicos/análise , Lagos , Temperatura
16.
Nat Commun ; 12(1): 3076, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031405

RESUMO

Changes in the sequence of an organism's genome, i.e., mutations, are the raw material of evolution. The frequency and location of mutations can be constrained by specific molecular mechanisms, such as diversity-generating retroelements (DGRs). DGRs have been characterized from cultivated bacteria and bacteriophages, and perform error-prone reverse transcription leading to mutations being introduced in specific target genes. DGR loci were also identified in several metagenomes, but the ecological roles and evolutionary drivers of these DGRs remain poorly understood. Here, we analyze a dataset of >30,000 DGRs from public metagenomes, establish six major lineages of DGRs including three primarily encoded by phages and seemingly used to diversify host attachment proteins, and demonstrate that DGRs are broadly active and responsible for >10% of all amino acid changes in some organisms. Overall, these results highlight the constraints under which DGRs evolve, and elucidate several distinct roles these elements play in natural communities.


Assuntos
Ecologia , Evolução Molecular , Microbiota/genética , Microbiota/fisiologia , Mutação , Bactérias/genética , Bacteriófagos/fisiologia , Biodiversidade , Ecossistema , Microbiologia Ambiental , Variação Genética , Metagenoma , Filogenia , Retroelementos
17.
Nat Rev Microbiol ; 17(6): 391-396, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31092905

RESUMO

The signs of climate change are undeniable, and the inevitable impact for Earth and all its inhabitants is a serious concern. Ice is melting, sea levels are rising, biodiversity is declining, precipitation has increased, atmospheric levels of carbon dioxide and greenhouse gases are alarmingly high, and extreme weather conditions are becoming increasingly common. But what role do microorganisms have in this global challenge? In this Viewpoint article, several experts in the field discuss the microbial contributions to climate change and consider the effects of global warming, extreme weather, flooding and other consequences of climate change on microbial communities in the ocean and soil, on host-microbiota interactions and on the global burden of infectious diseases and ecosystem processes, and they explore open questions and research needs.


Assuntos
Mudança Climática , Microbiologia do Solo , Biodiversidade , Carbono/metabolismo , Ecossistema , Humanos , Microbiota
18.
Syst Appl Microbiol ; 42(1): 54-66, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30616913

RESUMO

The phylum Caldiserica was identified from the hot spring 16S rRNA gene lineage 'OP5' and named for the sole isolate Caldisericum exile, a hot spring sulfur-reducing chemoheterotroph. Here we characterize 7 Caldiserica metagenome-assembled genomes (MAGs) from a thawing permafrost site in Stordalen Mire, Arctic Sweden. By 16S rRNA and marker gene phylogenies, and average nucleotide and amino acid identities, these Stordalen Mire Caldiserica (SMC) MAGs form part of a divergent clade from C. exile. Genome and meta-transcriptome and proteome analyses suggest that unlike Caldisericum, the SMCs (i) are carbohydrate- and possibly amino acid fermenters that can use labile plant compounds and peptides, and (ii) encode adaptations to low temperature. The SMC clade rose to community dominance within permafrost, with a peak metagenome-based relative abundance of ∼60%. It was also physiologically active in the upper seasonally-thawed soil. Beyond Stordalen Mire, analysis of 16S rRNA gene surveys indicated a global distribution of this clade, predominantly in anaerobic, carbon-rich and cold environments. These findings establish the SMCs as four novel phenotypically and ecologically distinct species within a single novel genus, distinct from C. exile clade at the phylum level. The SMCs are thus part of a novel cold-habitat phylum for an understudied, globally-distributed superphylum encompassing the Caldiserica. We propose the names Candidatus Cryosericota phylum nov., Ca. Cryosericia class nov., Ca. Cryosericales ord. nov., Ca. Cryosericaceae fam. nov., Ca. Cryosericum gen. nov., Ca. Cryosericum septentrionale sp. nov., Ca. C. hinesii sp. nov., Ca. C. odellii sp. nov., and Ca. C. terrychapinii sp. nov.


Assuntos
Bactérias/classificação , Pergelissolo/microbiologia , Filogenia , Bactérias/genética , Bactérias/isolamento & purificação , Técnicas de Tipagem Bacteriana , Temperatura Baixa , DNA Bacteriano/genética , Metagenoma , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Suécia
19.
PeerJ ; 7: e7265, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31309007

RESUMO

Soils impact global carbon cycling and their resident microbes are critical to their biogeochemical processing and ecosystem outputs. Based on studies in marine systems, viruses infecting soil microbes likely modulate host activities via mortality, horizontal gene transfer, and metabolic control. However, their roles remain largely unexplored due to technical challenges with separating, isolating, and extracting DNA from viruses in soils. Some of these challenges have been overcome by using whole genome amplification methods and while these have allowed insights into the identities of soil viruses and their genomes, their inherit biases have prevented meaningful ecological interpretations. Here we experimentally optimized steps for generating quantitatively-amplified viral metagenomes to better capture both ssDNA and dsDNA viruses across three distinct soil habitats along a permafrost thaw gradient. First, we assessed differing DNA extraction methods (PowerSoil, Wizard mini columns, and cetyl trimethylammonium bromide) for quantity and quality of viral DNA. This established PowerSoil as best for yield and quality of DNA from our samples, though ∼1/3 of the viral populations captured by each extraction kit were unique, suggesting appreciable differential biases among DNA extraction kits. Second, we evaluated the impact of purifying viral particles after resuspension (by cesium chloride gradients; CsCl) and of viral lysis method (heat vs bead-beating) on the resultant viromes. DNA yields after CsCl particle-purification were largely non-detectable, while unpurified samples yielded 1-2-fold more DNA after lysis by heat than by bead-beating. Virome quality was assessed by the number and size of metagenome-assembled viral contigs, which showed no increase after CsCl-purification, but did from heat lysis relative to bead-beating. We also evaluated sample preparation protocols for ssDNA virus recovery. In both CsCl-purified and non-purified samples, ssDNA viruses were successfully recovered by using the Accel-NGS 1S Plus Library Kit. While ssDNA viruses were identified in all three soil types, none were identified in the samples that used bead-beating, suggesting this lysis method may impact recovery. Further, 13 ssDNA vOTUs were identified compared to 582 dsDNA vOTUs, and the ssDNA vOTUs only accounted for ∼4% of the assembled reads, implying dsDNA viruses were dominant in these samples. This optimized approach was combined with the previously published viral resuspension protocol into a sample-to-virome protocol for soils now available at protocols.io, where community feedback creates 'living' protocols. This collective approach will be particularly valuable given the high physicochemical variability of soils, which will may require considerable soil type-specific optimization. This optimized protocol provides a starting place for developing quantitatively-amplified viromic datasets and will help enable viral ecogenomic studies on organic-rich soils.

20.
PeerJ ; 7: e6902, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31119088

RESUMO

BACKGROUND: Metagenomics has transformed our understanding of microbial diversity across ecosystems, with recent advances enabling de novo assembly of genomes from metagenomes. These metagenome-assembled genomes are critical to provide ecological, evolutionary, and metabolic context for all the microbes and viruses yet to be cultivated. Metagenomes can now be generated from nanogram to subnanogram amounts of DNA. However, these libraries require several rounds of PCR amplification before sequencing, and recent data suggest these typically yield smaller and more fragmented assemblies than regular metagenomes. METHODS: Here we evaluate de novo assembly methods of 169 PCR-amplified metagenomes, including 25 for which an unamplified counterpart is available, to optimize specific assembly approaches for PCR-amplified libraries. We first evaluated coverage bias by mapping reads from PCR-amplified metagenomes onto reference contigs obtained from unamplified metagenomes of the same samples. Then, we compared different assembly pipelines in terms of assembly size (number of bp in contigs ≥ 10 kb) and error rates to evaluate which are the best suited for PCR-amplified metagenomes. RESULTS: Read mapping analyses revealed that the depth of coverage within individual genomes is significantly more uneven in PCR-amplified datasets versus unamplified metagenomes, with regions of high depth of coverage enriched in short inserts. This enrichment scales with the number of PCR cycles performed, and is presumably due to preferential amplification of short inserts. Standard assembly pipelines are confounded by this type of coverage unevenness, so we evaluated other assembly options to mitigate these issues. We found that a pipeline combining read deduplication and an assembly algorithm originally designed to recover genomes from libraries generated after whole genome amplification (single-cell SPAdes) frequently improved assembly of contigs ≥10 kb by 10 to 100-fold for low input metagenomes. CONCLUSIONS: PCR-amplified metagenomes have enabled scientists to explore communities traditionally challenging to describe, including some with extremely low biomass or from which DNA is particularly difficult to extract. Here we show that a modified assembly pipeline can lead to an improved de novo genome assembly from PCR-amplified datasets, and enables a better genome recovery from low input metagenomes.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa