Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 159(4): 709-13, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25417146

RESUMO

Mammalian aging can be delayed with genetic, dietary, and pharmacologic approaches. Given that the elderly population is dramatically increasing and that aging is the greatest risk factor for a majority of chronic diseases driving both morbidity and mortality, it is critical to expand geroscience research directed at extending human healthspan.


Assuntos
Envelhecimento/fisiologia , Doença Crônica , Envelhecimento/patologia , Animais , Pesquisa Biomédica , Epigênese Genética , Interação Gene-Ambiente , Humanos
2.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474061

RESUMO

Chronic inflammation is a key player in metabolic dysfunction-associated fatty liver disease (MAFLD) progression. Necroptosis, an inflammatory cell death pathway, is elevated in MAFLD patients and mouse models, yet its role is unclear due to the diverse mouse models and inhibition strategies. In our study, we inhibited necroptosis by targeting mixed lineage kinase domain-like pseudokinase (MLKL), the terminal effector of necroptosis, in a high-fat, high-fructose, high-cholesterol (HFHFrHC) mouse model of diet-induced MAFLD. Despite the HFHFrHC diet upregulating MLKL (2.5-fold), WT mice livers showed no increase in necroptosis markers or associated proinflammatory cytokines. Surprisingly, Mlkl-/- mice experienced exacerbated liver inflammation without protection from diet-induced liver damage, steatosis, or fibrosis. In contrast, Mlkl+/- mice showed a significant reduction in these parameters that was associated with elevated Pparα and Pparγ levels. Both Mlkl-/- and Mlkl+/- mice on the HFHFrHC diet resisted diet-induced obesity, attributed to the increased beiging, enhanced oxygen consumption, and energy expenditure due to adipose tissue, and exhibited improved insulin sensitivity. These findings highlight the tissue-specific effects of MLKL on the liver and adipose tissue, and they suggest a dose-dependent effect of MLKL on liver pathology.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Frutose , Proteínas Quinases/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Modelos Animais de Doenças , Dieta Hiperlipídica/efeitos adversos , Tecido Adiposo/metabolismo , Inflamação , Colesterol , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
3.
Int J Mol Sci ; 22(19)2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34639076

RESUMO

Skeletal muscle suffers atrophy and weakness with aging. Denervation, oxidative stress, and mitochondrial dysfunction are all proposed as contributors to age-associated muscle loss, but connections between these factors have not been established. We examined contractility, mitochondrial function, and intracellular calcium transients (ICTs) in muscles of mice throughout the life span to define their sequential relationships. We performed these same measures and analyzed neuromuscular junction (NMJ) morphology in mice with postnatal deletion of neuronal Sod1 (i-mn-Sod1-/- mice), previously shown to display accelerated age-associated muscle loss and exacerbation of denervation in old age, to test relationships between neuronal redox homeostasis, NMJ degeneration and mitochondrial function. In control mice, the amount and rate of the decrease in mitochondrial NADH during contraction was greater in middle than young age although force was not reduced, suggesting decreased efficiency of NADH utilization prior to the onset of weakness. Declines in both the peak of the ICT and force were observed in old age. Muscles of i-mn-Sod1-/- mice showed degeneration of mitochondrial and calcium handling functions in middle-age and a decline in force generation to a level not different from the old control mice, with maintenance of NMJ morphology. Together, the findings support the conclusion that muscle mitochondrial function decreases during aging and in response to altered neuronal redox status prior to NMJ deterioration or loss of mass and force suggesting mitochondrial defects contribute to sarcopenia independent of denervation.


Assuntos
Envelhecimento , Cálcio/metabolismo , Mitocôndrias Musculares/patologia , Neurônios/patologia , Estresse Oxidativo , Sarcopenia/patologia , Superóxido Dismutase-1/fisiologia , Animais , Denervação , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Musculares/metabolismo , Contração Muscular , Neurônios/metabolismo , Oxirredução , Sarcopenia/etiologia
4.
J Physiol ; 595(20): 6409-6415, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28792061

RESUMO

Skeletal muscle ageing is characterised by atrophy, a deficit in specific force generation, increased susceptibility to injury, and incomplete recovery after severe damage. The hypothesis that increased generation of reactive oxygen species (ROS) in vivo plays a key role in the ageing process has been extensively studied, but remains controversial. Skeletal muscle generates ROS at rest and during exercise. ROS can cause oxidative damage particularly to proteins. Indeed, products of oxidative damage accumulate in skeletal muscle during ageing and the ability of muscle cells to respond to increased ROS becomes defective. The aim of this review is to examine the evidence that ROS manipulation in peripheral nerves and/or muscle modifies mechanisms of proteostasis in skeletal muscle and plays a key role in initiating sarcopenia.


Assuntos
Envelhecimento/fisiologia , Proteínas Musculares/metabolismo , Músculo Esquelético/inervação , Músculo Esquelético/metabolismo , Nervos Periféricos/fisiologia , Proteostase , Espécies Reativas de Oxigênio/metabolismo , Envelhecimento/metabolismo , Animais , Fragilidade/metabolismo , Humanos , Sarcopenia/metabolismo
5.
Arch Biochem Biophys ; 613: 61-68, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27916505

RESUMO

Cyclophilin D (CyPD), a mitochondrial matrix protein, has been widely studied for its role in mitochondrial-mediated cell death. Unexpectedly, we previously discovered that overexpression of CyPD in a stable cell line, increased mitochondrial membrane potentials and enhanced cell survival under conditions of oxidative stress. Here, we investigated the underlying mechanisms responsible for these findings. Spectrophotometric measurements in isolated mitochondria revealed that overexpression of CyPD in HEK293 cells increased respiratory chain activity, but only for Complex III (CIII). Acute treatment of mitochondria with the immumosupressant cyclosporine A did not affect CIII activity. Expression levels of the CIII subunits cytochrome b and Rieske-FeS were elevated in HEK293 cells overexpressing CyPD. However, CIII activity was still significantly higher compared to control mitochondria, even when normalized by protein expression. Blue native gel electrophoresis and Western blot assays revealed a molecular interaction of CyPD with CIII and increased levels of supercomplexes in mitochondrial protein extracts. Radiolabeled protein synthesis in mitochondria showed that CIII assembly and formation of supercomplexes containing CIII were significantly faster when CyPD was overexpressed. Taken together, these data indicate that CyPD regulates mitochondrial metabolism, and likely cell survival, by promoting more efficient electrons flow through the respiratory chain via increased supercomplex formation.


Assuntos
Ciclofilinas/metabolismo , Mitocôndrias/metabolismo , Ciclosporina/química , Transporte de Elétrons , Regulação da Expressão Gênica , Células HEK293 , Humanos , Potencial da Membrana Mitocondrial , Membranas Mitocondriais/metabolismo , Estresse Oxidativo , Oxigênio/química , Ligação Proteica , Conformação Proteica , Espectrofotometria
6.
Arch Biochem Biophys ; 576: 39-48, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25558793

RESUMO

Obesity is a serious chronic disease that increases the risk of numerous co-morbidities including metabolic syndrome, cardiovascular disease and cancer as well as increases risk of mortality, leading some to suggest this condition represents accelerated aging. Obesity is associated with significant increases in oxidative stress in vivo and, despite the well-explored relationship between oxidative stress and aging, the role this plays in the increased mortality of obese subjects remains an unanswered question. Here, we addressed this by undertaking a comprehensive, longitudinal study of a group of high fat-fed obese mice and assessed both their changes in oxidative stress and in their performance in physiological assays known to decline with aging. In female C57BL/6J mice fed a high-fat diet starting in adulthood, mortality was significantly increased as was oxidative damage in vivo. High fat-feeding significantly accelerated the decline in performance in several assays, including activity, gait, and rotarod. However, we also found that obesity had little effect on other markers of function and actually improved performance in grip strength, a marker of muscular function. Together, this first comprehensive assessment of longitudinal, functional changes in high fat-fed mice suggests that obesity may induce segmental acceleration of some of the aging process.


Assuntos
Envelhecimento , Marcha , Força da Mão , Camundongos/crescimento & desenvolvimento , Obesidade/metabolismo , Estresse Oxidativo , Animais , Composição Corporal , Dieta Hiperlipídica/efeitos adversos , Feminino , Inflamação/metabolismo , Longevidade , Camundongos/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/complicações , Obesidade/etiologia
7.
FASEB J ; 28(4): 1666-81, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24378874

RESUMO

Deletion of copper-zinc superoxide dismutase (CuZnSOD) in Sod1(-/-) mice leads to accelerated loss of muscle mass and force during aging, but the losses do not occur with muscle-specific deletion of CuZnSOD. To determine the role of motor neurons in the muscle decline, we generated transgenic Sod1(-/-) mice in which CuZnSOD was expressed under control of the synapsin 1 promoter (SynTgSod1(-/-) mice). SynTgSod1(-/-) mice expressed CuZnSOD in brain, spinal cord, and peripheral nerve, but not in other tissues. Sciatic nerve CuZnSOD content in SynTgSod1(-/-) mice was ~20% that of control mice, but no reduction in muscle mass or isometric force was observed in SynTgSod1(-/-) mice compared with control animals, whereas muscles of age-matched Sod1(-/-) mice displayed 30-40% reductions in mass and force. In addition, increased oxidative damage and adaptations in stress responses observed in muscles of Sod1(-/-) mice were absent in SynTgSod1(-/-) mice, and degeneration of neuromuscular junction (NMJ) structure and function occurred in Sod1(-/-) mice but not in SynTgSod1(-/-) mice. Our data demonstrate that specific CuZnSOD expression in neurons is sufficient to preserve NMJ and skeletal muscle structure and function in Sod1(-/-) mice and suggest that redox homeostasis in motor neurons plays a key role in initiating sarcopenia during aging.


Assuntos
Neurônios Motores/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Superóxido Dismutase/metabolismo , Envelhecimento/genética , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Animais , Western Blotting , Eletromiografia , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Atrofia Muscular/genética , Atrofia Muscular/fisiopatologia , Junção Neuromuscular/metabolismo , Junção Neuromuscular/fisiopatologia , Tamanho do Órgão/genética , Oxirredução , Sarcopenia/genética , Sarcopenia/metabolismo , Sarcopenia/fisiopatologia , Superóxido Dismutase/genética , Superóxido Dismutase-1 , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia
8.
FASEB J ; 27(9): 3536-48, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23729587

RESUMO

We have previously shown that deletion of CuZnSOD in mice (Sod1(-/-) mice) leads to accelerated loss of muscle mass and contractile force during aging. To dissect the relative roles of skeletal muscle and motor neurons in this process, we used a Cre-Lox targeted approach to establish a skeletal muscle-specific Sod1-knockout (mKO) mouse to determine whether muscle-specific CuZnSOD deletion is sufficient to cause muscle atrophy. Surprisingly, mKO mice maintain muscle masses at or above those of wild-type control mice up to 18 mo of age. In contrast, maximum isometric specific force measured in gastrocnemius muscle is significantly reduced in the mKO mice. We found no detectable increases in global measures of oxidative stress or ROS production, no reduction in mitochondrial ATP production, and no induction of adaptive stress responses in muscle from mKO mice. However, Akt-mTOR signaling is elevated and the number of muscle fibers with centrally located nuclei is increased in skeletal muscle from mKO mice, which suggests elevated regenerative pathways. Our data demonstrate that lack of CuZnSOD restricted to skeletal muscle does not lead to muscle atrophy but does cause muscle weakness in adult mice and suggest loss of CuZnSOD may potentiate muscle regenerative pathways.


Assuntos
Contração Muscular/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Atrofia Muscular/enzimologia , Superóxido Dismutase/metabolismo , Animais , Western Blotting , Peroxidação de Lipídeos/genética , Peroxidação de Lipídeos/fisiologia , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Contração Muscular/genética , Músculo Esquelético/ultraestrutura , Atrofia Muscular/genética , Estresse Oxidativo , Superóxido Dismutase/genética , Superóxido Dismutase-1 , Tirosina/análogos & derivados , Tirosina/metabolismo
9.
Cell Calcium ; 119: 102854, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38430790

RESUMO

The necroptotic effector molecule MLKL accumulates in neurons over the lifespan of mice, and its downregulation has the potential to improve cognition through neuroinflammation, and changes in the abundance of synaptic proteins and enzymes in the central nervous system. Notwithstanding, direct evidence of cell-autonomous effects of MLKL expression on neuronal physiology and metabolism are lacking. Here, we tested whether the overexpression of MLKL in the absence of cell death in the neuronal cell line Neuro-2a recapitulates some of the hallmarks of aging at the cellular level. Using genetically-encoded fluorescent biosensors, we monitored the cytosolic and mitochondrial Ca2+ levels, along with the cytosolic concentrations of several metabolites involved in energy metabolism (lactate, glucose, ATP) and oxidative stress (oxidized/reduced glutathione). We found that MLKL overexpression marginally decreased cell viability, however, it led to reduced cytosolic and mitochondrial Ca2+ elevations in response to Ca2+ influx from the extracellular space. On the contrary, Ca2+ signals were elevated after mobilizing Ca2+ from the endoplasmic reticulum. Transient elevations in cytosolic Ca2+, mimicking neuronal stimulation, lead to higher lactate levels and lower glucose concentrations in Neuro-2a cells when overexpressing MLKL, which suggest enhanced neuronal glycolysis. Despite these alterations, energy levels and glutathione redox state in the cell bodies remained largely preserved after inducing MLKL overexpression for 24-48 h. Taken together, our proof-of-concept experiments are consistent with the hypothesis that MLKL overexpression in the absence of cell death contributes to both Ca2+ and metabolic dyshomeostasis, which are cellular hallmarks of brain aging.


Assuntos
Lactatos , Neurônios , Camundongos , Animais , Neurônios/metabolismo , Linhagem Celular , Morte Celular , Lactatos/metabolismo , Lactatos/farmacologia , Glucose/metabolismo , Proteínas Quinases/metabolismo
10.
Geroscience ; 46(3): 3219-3233, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38233728

RESUMO

Oxidative stress is associated with tissue dysfunctions that can lead to reduced health. Prior work has shown that oxidative stress contributes to both muscle atrophy and cellular senescence, which is a hallmark of aging that may drive in muscle atrophy and muscle contractile dysfunction. The purpose of the study was to test the hypothesis that cellular senescence contributes to muscle atrophy or weakness. To increase potential senescence in skeletal muscle, we used a model of oxidative stress-induced muscle frailty, the CuZn superoxide dismutase knockout (Sod1KO) mouse. We treated 6-month-old wildtype (WT) and Sod1KO mice with either vehicle or a senolytic treatment of combined dasatinib (5 mg/kg) + quercetin (50 mg/kg) (D + Q) for 3 consecutive days every 15 days. We continued treatment for 7 months and sacrificed the mice at 13 months of age. Treatment with D + Q did not preserve muscle mass, reduce NMJ fragmentation, or alter muscle protein synthesis in Sod1KO mice when compared to the vehicle-treated group. However, we observed an improvement in muscle-specific force generation in Sod1KO mice treated with D + Q when compared to Sod1KO-vehicle mice. Overall, these data suggest that reducing cellular senescence via D + Q is not sufficient to mitigate loss of muscle mass in a mouse model of oxidative stress-induced muscle frailty but may mitigate some aspects of oxidative stress-induced muscle dysfunction.


Assuntos
Fragilidade , Senoterapia , Camundongos , Animais , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Camundongos Knockout , Estresse Oxidativo , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Músculo Esquelético/metabolismo , Superóxido Dismutase/metabolismo
11.
bioRxiv ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38260537

RESUMO

Chronic inflammation is a key player in metabolic dysfunction-associated fatty liver disease (MAFLD) progression. Necroptosis, an inflammatory cell death pathway, is elevated in MAFLD patients and mouse models, yet its role is unclear due to diverse mouse models and inhibition strategies. In our study, we inhibited necroptosis by targeting mixed lineage kinase domain like pseudokinase (MLKL), the terminal effector of necroptosis, in a high-fat, high-fructose, high-cholesterol (HFHFrHC) mouse model of diet-induced MAFLD mouse model. Despite HFHFrHC diet upregulating MLKL (2.5-fold), WT mice livers showed no increase in necroptosis markers or associated proinflammatory cytokines. Surprisingly, Mlkl -/- mice experienced exacerbated liver inflammation without protection from diet-induced liver damage, steatosis, or fibrosis. In contrast, Mlkl +/- mice showed significant reduction in these parameters that was associated with elevated Pparα and Pparγ levels. Both Mlkl -/- and Mlkl +/- mice on HFHFrHC diet resisted diet-induced obesity, attributed to increased beiging, enhanced oxygen consumption and energy expenditure due to adipose tissue, and exhibited improved insulin sensitivity. These findings highlight the tissue specific effects of MLKL on the liver and adipose tissue, and suggest a dose-dependent effect of MLKL on liver pathology.

12.
Geroscience ; 46(2): 2739-2754, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38159133

RESUMO

Aging has a significant impact on the immune system, leading to a gradual decline in immune function and changes in the body's ability to respond to bacterial infections. Non-tuberculous mycobacteria (NTM), also known as atypical mycobacteria or environmental mycobacteria, are commonly found in soil, water, and various environmental sources. While many NTM species are considered opportunistic pathogens, some can cause significant infections, particularly in individuals with compromised immune systems, such as older individuals. When mycobacteria enter the body, macrophages are among the first immune cells to encounter them and attempt to engulf mycobacteria through a process called phagocytosis. Some NTM species, including Mycobacterium avium (M. avium) can survive and replicate within macrophages. However, little is known about the interaction between NTM and macrophages in older individuals. In this study, we investigated the response of bone marrow-derived macrophage (BMMs) isolated from young (5 months) and old (25 months) mice to M. avium serotype 4, one of the main NTM species in patients with pulmonary NTM diseases. Our results demonstrated that BMMs from old mice have an increased level of intracellular iron and are more susceptible to M. avium serotype 4 infection compared to BMMs from young mice. The whole-cell proteomic analysis indicated a dysregulated expression of iron homeostasis-associated proteins in old BMMs regardless of mycobacterial infection. Deferoxamine, an iron chelator, significantly rescued mycobacterial killing and phagolysosome maturation in BMMs from old mice. Therefore, our data for the first time indicate that an intracellular iron accumulation improves NTM survival within macrophages from old mice and suggest a potential application of iron-chelating drugs as a host-directed therapy for pulmonary NTM infection in older individuals.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Proteômica , Humanos , Animais , Camundongos , Idoso , Infecções por Mycobacterium não Tuberculosas/microbiologia , Micobactérias não Tuberculosas/fisiologia , Macrófagos , Fagocitose
13.
Eur J Neurosci ; 37(12): 1987-93, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23773068

RESUMO

Production of new neurons from stem cells is important for cognitive function, and the reduction of neurogenesis in the aging brain may contribute to the accumulation of age-related cognitive deficits. Restriction of calorie intake and prolonged treatment with rapamycin have been shown to extend the lifespan of animals and delay the onset of the age-related decline in tissue and organ function. Using a reporter line in which neural stem and progenitor cells are marked by the expression of green fluorescent protein (GFP), we examined the effect of prolonged exposure to calorie restriction (CR) or rapamycin on hippocampal neural stem and progenitor cell proliferation in aging mice. We showed that CR increased the number of dividing cells in the dentate gyrus of female mice. The majority of these cells corresponded to nestin-GFP-expressing neural stem or progenitor cells; however, this increased proliferative activity of stem and progenitor cells did not result in a significant increase in the number of doublecortin-positive newborn neurons. Our results suggest that restricted calorie intake may increase the number of divisions that neural stem and progenitor cells undergo in the aging brain of females.


Assuntos
Envelhecimento/fisiologia , Restrição Calórica , Hipocampo/citologia , Células-Tronco Neurais/citologia , Neurogênese/fisiologia , Envelhecimento/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Sirolimo/farmacologia
14.
Biochem Biophys Res Commun ; 438(1): 78-83, 2013 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-23872067

RESUMO

The development of insulin resistance is the primary step in the etiology of type 2 diabetes mellitus. There are several risk factors associated with insulin resistance, yet the basic biological mechanisms that promote its development are still unclear. There is growing literature that suggests mitochondrial dysfunction and/or oxidative stress play prominent roles in defects in glucose metabolism. Here, we tested whether increased expression of CuZn-superoxide dismutase (Sod1) or Mn-superoxide dismutase (Sod2) prevented obesity-induced changes in oxidative stress and metabolism. Both Sod1 and Sod2 overexpressing mice were protected from high fat diet-induced glucose intolerance. Lipid oxidation (F2-isoprostanes) was significantly increased in muscle and adipose with high fat feeding. Mice with increased expression of either Sod1 or Sod2 showed a significant reduction in this oxidative damage. Surprisingly, mitochondria from the muscle of high fat diet-fed mice showed no significant alteration in function. Together, our data suggest that targeting reduced oxidative damage in general may be a more applicable therapeutic target to prevent insulin resistance than is improving mitochondrial function.


Assuntos
Gorduras na Dieta/efeitos adversos , Mitocôndrias/metabolismo , Obesidade/enzimologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Obesidade/patologia , Superóxido Dismutase/genética , Regulação para Cima/efeitos dos fármacos
15.
Geroscience ; 45(6): 3241-3256, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37792157

RESUMO

To study the impact of necroptosis-induced chronic inflammation on age-related diseases and aging, two knockin mouse models (Ripk3-KI and Mlkl-KI) were generated that overexpress two genes involved in necroptosis (Ripk3 or Mlkl) when crossed to Cre transgenic mice. Crossing Ripk3-KI or Mlkl-KI mice to albumin-Cre transgenic mice produced hepatocyte specific hRipk3-KI or hMlkl-KI mice, which express the two transgenes only in the liver. Ripk3 and Mlkl proteins were overexpressed 10- and fourfold, respectively, in the livers of the hRipk3-KI or hMlkl-KI mice. Treating young (2-month) hRipk3-KI or hMlkl-KI mice with carbon tetrachloride (CCl4), a chemical inducer of oxidative stress, resulted in increased necroptosis (Mlkl-oligomers) and inflammation in the liver compared to control mice receiving CCl4. Mlkl-oligomerization also was significantly increased in old (18-month) hRipk3-KI and hMlkl-KI mice compared to old control (Cre negative, Ripk3-KI and Mlkl-KI) mice. The increase in necroptosis was associated with an increase in inflammation, e.g., inflammatory cytokines (TNFα, IL-6) and macrophage markers (F4/80, CD68). Importantly, steatosis (triglycerides) and fibrosis (e.g., picrosirius red staining, hydroxyproline levels, and transcripts for TGFß, Col1α1, and Col3α1) that increase with age were significantly higher in the livers of the old hRipk3-KI or hMlkl-KI mice compared to old control mice. In addition, markers of cellular senescence were significantly increased in the livers of the old hRipk3-KI and hMlkl-KI mice. Thus, the first mouse models have been developed that allow researchers to study the impact of inducing necroptosis in specific cells/tissues on chronic inflammation in aging and age-related diseases.


Assuntos
Necroptose , Proteínas Quinases , Camundongos , Animais , Proteínas Quinases/genética , Inflamação , Envelhecimento , Camundongos Transgênicos
16.
J Gerontol A Biol Sci Med Sci ; 78(5): 771-779, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-36762848

RESUMO

We generated a genetically heterogenous rat model by a 4-way cross strategy using 4 inbred strains (Brown Norway [BN], Fischer 344 [F344], Lewis [LEW], and Wistar Kyoto [KY]) to provide investigators with a highly genetically diverse rat model from commercially available inbred rats. We made reciprocal crosses between males and females from the 2 F1 hybrids to generate genetically heterogeneous rats with mitochondrial genomes from either the BN (OKC-HETB, a.k.a "B" genotype) or WKY (OKC-HETW a.k.a "W" genotype) parental strains. These two mitochondrial genomes differ at 94 nucleotides, more akin to human mitochondrial genome diversity than that available in classical laboratory mouse strains. Body weights of the B and W genotypes were similar. However, mitochondrial genotype antagonistically affected grip strength and treadmill endurance in females only. In addition, mitochondrial genotype significantly affected multiple responses to a high-fat diet (HFD) and treatment with 17α-estradiol. Contrary to findings in mice in which males only are affected by 17α-estradiol supplementation, female rats fed a HFD beneficially responded to 17α-estradiol treatment as evidenced by declines in body mass, adiposity, and liver mass. Male rats, by contrast, differed in a mitochondrial genotype-specific manner, with only B males responding to 17α-estradiol treatment. Mitochondrial genotype and sex differences were also observed in features of brain-specific antioxidant response to a HFD and 17α-estradiol as shown by hippocampal levels of Sod2 acetylation, JNK, and FoxO3a. These results emphasize the importance of mitochondrial genotype in assessing responses to putative interventions in aging processes.


Assuntos
Genoma Mitocondrial , Humanos , Ratos , Feminino , Masculino , Animais , Camundongos , Ratos Endogâmicos F344 , Ratos Endogâmicos WKY , Ratos Endogâmicos Lew , Ratos Endogâmicos , Estradiol
17.
Redox Biol ; 59: 102550, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36470129

RESUMO

Neuronal oxidative stress has been implicated in aging and neurodegenerative disease. Here we investigated the impact of elevated oxidative stress induced in mouse spinal cord by deletion of Mn-Superoxide dismutase (MnSOD) using a neuron specific Cre recombinase in Sod2 floxed mice (i-mn-Sod2 KO). Sod2 deletion in spinal cord neurons was associated with mitochondrial alterations and peroxide generation. Phenotypically, i-mn-Sod2 KO mice experienced hindlimb paralysis and clasping behavior associated with extensive demyelination and reduced nerve conduction velocity, axonal degeneration, enhanced blood brain barrier permeability, elevated inflammatory cytokines, microglia activation, infiltration of neutrophils and necroptosis in spinal cord. In contrast, spinal cord motor neuron number, innervation of neuromuscular junctions, muscle mass, and contractile function were not altered. Overall, our findings show that loss of MnSOD in spinal cord promotes a phenotype of demyelination, inflammation and progressive paralysis that mimics phenotypes associated with progressive multiple sclerosis.


Assuntos
Esclerose Múltipla , Doenças Neurodegenerativas , Camundongos , Animais , Mitocôndrias , Superóxido Dismutase/genética , Neurônios Motores , Superóxido Dismutase-1/genética , Fenótipo , Paralisia/genética , Inflamação/genética
18.
Cancer Sci ; 103(8): 1429-33, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22533343

RESUMO

Isocitrate dehydrogenase 1 (IDH1), a cytosolic enzyme that converts isocitrate to alpha-ketoglutarate, has been shown to be dysregulated during tumorigenesis. However, at what stage of cancer development IDH1 is dysregulated and how IDH1 may affect cell transformation and tumor promotion during early stages of cancer development are unclear. We used a skin cell transformation model and mouse skin epidermal tissues to study the role of IDH1 in early skin tumorigenesis. Our studies demonstrate that both the tumor promoter TPA and UVC irradiation decreased expression and activity levels of IDH1, not IDH2, in the tumor promotable JB6 P+ cell model. Skin epidermal tissues treated with dimethylbenz[α]anthracene/TPA also showed decreases in IDH1 expression and activity. In non-promotable JB6 P-cells, IDH1 was upregulated upon TPA treatment, whereas IDH2 was maintained at similar levels with TPA treatment. Interestingly, IDH1 knockdown enhanced, whereas IDH1 overexpression suppressed, TPA-induced cell transformation. Finally, manganese superoxide dismutase overexpression suppressed tumor promoter induced decreases in IDH1 expression and mitochondrial respiration, while intracellular alpha-ketoglutarate levels were unchanged. These results suggest that decreased IDH1 expression in early stage skin tumorigenesis is highly correlated with tumor promotion. In addition, oxidative stress might contribute to IDH1 inactivation, because manganese superoxide dismutase, a mitochondrial antioxidant enzyme, blocked decreases in IDH1 expression and activity.


Assuntos
Antioxidantes/metabolismo , Transformação Celular Neoplásica/metabolismo , Isocitrato Desidrogenase/metabolismo , Queratinócitos/metabolismo , Papiloma/metabolismo , Neoplasias Cutâneas/metabolismo , Pele/metabolismo , Superóxido Dismutase/metabolismo , Animais , Western Blotting , Regulação para Baixo , Imunofluorescência , Camundongos , Camundongos Endogâmicos DBA , Estresse Oxidativo , Consumo de Oxigênio , RNA Interferente Pequeno , Pele/patologia , Transfecção
19.
Biochem Biophys Res Commun ; 422(3): 515-21, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22613204

RESUMO

Mitochondrial complex I has previously been shown to release superoxide exclusively towards the mitochondrial matrix, whereas complex III releases superoxide to both the matrix and the cytosol. Superoxide produced at complex III has been shown to exit the mitochondria through voltage dependent anion channels (VDAC). To test whether complex I-derived, mitochondrial matrix-directed superoxide can be released to the cytosol, we measured superoxide generation in mitochondria isolated from wild type and from mice genetically altered to be deficient in MnSOD activity (TnIFastCreSod2(fl/fl)). Under experimental conditions that produce superoxide primarily by complex I (glutamate/malate plus rotenone, GM+R), MnSOD-deficient mitochondria release ∼4-fold more superoxide than mitochondria isolated from wild type mice. Exogenous CuZnSOD completely abolished the EPR-derived GM+R signal in mitochondria isolated from both genotypes, evidence that confirms mitochondrial superoxide release. Addition of the VDAC inhibitor DIDS significantly reduced mitochondrial superoxide release (∼75%) in mitochondria from either genotype respiring on GM+R. Conversely, inhibition of potential inner membrane sites of superoxide exit, including the matrix face of the mitochondrial permeability transition pore and the inner membrane anion channel did not reduce mitochondrial superoxide release in the presence of GM+R in mitochondria isolated from either genotype. These data support the concept that complex I-derived mitochondrial superoxide release does indeed occur and that the majority of this release occurs through VDACs.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias Musculares/metabolismo , Superóxidos/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/farmacologia , Animais , Camundongos , Camundongos Mutantes , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Canais de Ânion Dependentes de Voltagem/antagonistas & inibidores
20.
FASEB J ; 25(1): 398-408, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20826540

RESUMO

Multiple stress resistance pathways were evaluated in the liver of Ames dwarf mice before and after exposure to the oxidative toxin diquat, seeking clues to the exceptional longevity conferred by this mutation. Before diquat treatment, Ames dwarf mice, compared with nonmutant littermate controls, had 2- to 6-fold higher levels of expression of mRNAs for immediate early genes and 2- to 5-fold higher levels of mRNAs for genes dependent on the transcription factor Nrf2. Diquat led to a 2-fold increase in phosphorylation of the stress kinase ERK in control (but not Ames dwarf) mice and to a 50% increase in phosphorylation of the kinase JNK2 in Ames dwarf (but not control) mice. Diquat induction of Nrf2 protein was higher in dwarf mice than in controls. Of 6 Nrf2-responsive genes evaluated, 4 (HMOX, NQO-1, MT-1, and MT-2) remained 2- to 10-fold lower in control than in dwarf liver after diquat, and the other 2 (GCLM and TXNRD) reached levels already seen in dwarf liver at baseline. Thus, livers of Ames dwarf mice differ systematically from controls in multiple stress resistance pathways before and after exposure to diquat, suggesting mechanisms for stress resistance and extended longevity in Ames dwarf mice.


Assuntos
Diquat/toxicidade , Nanismo Hipofisário/metabolismo , Fígado/efeitos dos fármacos , Estresse Oxidativo , Animais , Western Blotting , Nanismo Hipofisário/genética , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Precoces/genética , Glutamato-Cisteína Ligase/genética , Heme Oxigenase-1/genética , Herbicidas/toxicidade , Fígado/metabolismo , Longevidade/genética , Masculino , Proteínas de Membrana/genética , Metalotioneína/genética , Camundongos , Camundongos Mutantes , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NAD(P)H Desidrogenase (Quinona)/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fosforilação/efeitos dos fármacos , Subunidades Proteicas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tiorredoxina Redutase 1/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa