Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Glob Chang Biol ; 28(21): 6370-6384, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36054687

RESUMO

Peatlands drained for agriculture or forestry are susceptible to the rapid release of greenhouse gases (GHGs) through enhanced microbial decomposition and increased frequency of deep peat fires. We present evidence that rewetting drained subtropical wooded peatlands (STWPs) along the southeastern USA coast, primarily pocosin bogs, could prevent significant carbon (C) losses. To quantify GHG emissions and storage from drained and rewetted pocosin we used eddy covariance techniques, the first such estimates that have been applied to this major bog type, on a private drained (PD) site supplemented by static chamber measurements at PD and Pocosin Lakes National Wildlife Refuge. Net ecosystem exchange measurements showed that the loss was 21.2 Mg CO2  ha-1  year-1 (1 Mg = 106 g) in the drained pocosin. Under a rewetted scenario, where the annual mean water table depth (WTD) decreased from 60 to 30 cm, the C loss was projected to fall to 2 Mg CO2  ha-1  year-1 , a 94% reduction. If the WTD was 20 cm, the peatlands became a net carbon sink (-3.3 Mg CO2  ha-1  year-1 ). Hence, net C reductions could reach 24.5 Mg CO2  ha-1  year-1 , and when scaled up to the 4000 ha PD site nearly 100,000 Mg CO2  year-1 of creditable C could be amassed. We conservatively estimate among the 0.75 million ha of southeastern STWPs, between 450 and 770 km2 could be rewet, reducing annual GHG emissions by 0.96-1.6 Tg (1 Tg = 1012 g) of CO2 , through suppressed microbial decomposition and 1.7-2.8 Tg via fire prevention, respectively. Despite covering <0.01% of US land area, rewetting drained pocosin can potentially provide 2.4% of the annual CO2 nationwide reduction target of 0.18 Pg (1 Pg = 1015 g). Suggesting pocosin restoration can contribute disproportionately to the US goal of achieving net-zero emission by 2050.


Assuntos
Sequestro de Carbono , Gases de Efeito Estufa , Carbono , Dióxido de Carbono/análise , Ecossistema , Gases de Efeito Estufa/análise , Hidrologia , Metano/análise , Solo , Áreas Alagadas
2.
Glob Chang Biol ; 26(7): 3930-3946, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32388914

RESUMO

Worldwide, regularly recurring wildfires shape many peatland ecosystems to the extent that fire-adapted species often dominate plant communities, suggesting that wildfire is an integral part of peatland ecology rather than an anomaly. The most destructive blazes are smoldering fires that are usually initiated in periods of drought and can combust entire peatland carbon stores. However, peatland wildfires more typically occur as low-severity surface burns that arise in the dormant season when vegetation is desiccated, and soil moisture is high. In such low-severity fires, surface layers experience flash heating, but there is little loss of underlying peat to combustion. This study examines the potential importance of such processes in several peatlands that span a gradient from hemiboreal to tropical ecozones and experience a wide range of fire return intervals. We show that low-severity fires can increase the pool of stable soil carbon by thermally altering the chemistry of soil organic matter (SOM), thereby reducing rates of microbial respiration. Using X-ray photoelectron spectroscopy and Fourier transform infrared, we demonstrate that low-severity fires significantly increase the degree of carbon condensation and aromatization of SOM functional groups, particularly on the surface of peat aggregates. Laboratory incubations show lower CO2 emissions from peat subjected to low-severity fire and predict lower cumulative CO2 emissions from burned peat after 1-3 years. Also, low-severity fires reduce the temperature sensitivity (Q10 ) of peat, indicating that these fires can inhibit microbial access to SOM. The increased stability of thermally altered SOM may allow a greater proportion of organic matter to survive vertical migration into saturated and anaerobic zones of peatlands where environmental conditions physiochemically protect carbon stores from decomposition for thousands of years. Thus, across latitudes, low-severity fire is an overlooked factor influencing carbon cycling in peatlands, which is relevant to global carbon budgets as climate change alters fire regimes worldwide.


Assuntos
Ecossistema , Incêndios , Carbono , Ciclo do Carbono , Solo
3.
Environ Sci Technol ; 54(3): 1533-1544, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31951397

RESUMO

Reliable predictions of the environmental fate and risk of engineered nanomaterials (ENMs) require a better understanding of ENM reactivity in complex, biologically active systems for chronic low-concentration exposure scenarios. Here, simulated freshwater wetland mesocosms were dosed with ENMs to assess how their reactivity and seasonal changes in environmental parameters influence ENM fate in aquatic systems. Copper-based ENMs (Kocide), known to dissolve in water, and gold nanoparticles (AuNPs), stable against dissolution in the absence of specific ligands, were added weekly to mesocosm waters for 9 months. Metal accumulation and speciation changes in the different environmental compartments were assessed over time. Copper from Kocide rapidly dissolved likely associating with organic matter in the water column, transported to terrestrial soils and deeper sediment where it became associated with organic or sulfide phases. In contrast, Au accumulated on/in the macrophytes where it oxidized and transferred over time to surficial sediment. A dynamic seasonal accumulation and metal redox cycling were found between the macrophyte and the surficial sediment for AuNPs. These results demonstrate the need for experimental quantification of how the biological and chemical complexity of the environment, combined with their seasonal variations, drive the fate of metastable ENMs.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Cobre , Água Doce , Ouro , Estações do Ano , Áreas Alagadas
4.
Ecol Appl ; 28(6): 1435-1449, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29939451

RESUMO

Despite the rapid rise in diversity and quantities of engineered nanomaterials produced, the impacts of these emerging contaminants on the structure and function of ecosystems have received little attention from ecologists. Moreover, little is known about how manufactured nanomaterials may interact with nutrient pollution in altering ecosystem productivity, despite the recognition that eutrophication is the primary water quality issue in freshwater ecosystems worldwide. In this study, we asked two main questions: (1) To what extent do manufactured nanoparticles affect the biomass and productivity of primary producers in wetland ecosystems? (2) How are these impacts mediated by nutrient pollution? To address these questions, we examined the impacts of a citrate-coated gold nanoparticle (AuNPs) and of a commercial pesticide containing Cu(OH)2 nanoparticles (CuNPs) on aquatic primary producers under both ambient and enriched nutrient conditions. Wetland mesocosms were exposed repeatedly with low concentrations of nanoparticles and nutrients over the course of a 9-month experiment in an effort to replicate realistic field exposure scenarios. In the absence of nutrient enrichment, there were no persistent effects of AuNPs or CuNPs on primary producers or ecosystem productivity. However, when combined with nutrient enrichment, both NPs intensified eutrophication. When either of these NPs were added in combination with nutrients, algal blooms persisted for >50 d longer than in the nutrient-only treatment. In the AuNP treatment, this shift from clear waters to turbid waters led to large declines in both macrophyte growth and rates of ecosystem gross primary productivity (average reduction of 52% ± 6% and 92% ± 5%, respectively) during the summer. Our results suggest that nutrient status greatly influences the ecosystem-scale impact of two emerging contaminants and that synthetic chemicals may be playing an under-appreciated role in the global trends of increasing eutrophication. We provide evidence here that chronic exposure to Au and Cu(OH)2 nanoparticles at low concentrations can intensify eutrophication of wetlands and promote the occurrence of algal blooms.


Assuntos
Cobre/toxicidade , Eutrofização , Ouro/toxicidade , Hidróxidos/toxicidade , Nanopartículas/toxicidade , Áreas Alagadas , Hydrocharitaceae/crescimento & desenvolvimento , Oxigênio/metabolismo
5.
Environ Sci Technol ; 52(5): 2558-2565, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29381864

RESUMO

Silver nanoparticles (AgNPs) are increasingly used in consumer products, biotechnology, and medicine, and are released into aquatic ecosystems through wastewater discharge. This study investigated the phytotoxicity of AgNPs to aquatic plants, Egeria densa and Juncus effusus by measuring physiologic and enzymatic responses to AgNP exposure under three release scenarios: two chronic (8.7 mg, weekly) exposures to either zerovalent AgNPs or sulfidized silver nanoparticles; and a pulsed (450 mg, one-time) exposure to zerovalent AgNPs. Plant enzymatic and biochemical stress responses were assessed using superoxide dismutase (SOD) and peroxidase (POD) activity, malondialdehyde (MDA) concentrations and chlorophyll content as markers of defense and phytotoxicity, respectively. The high initial pulse treatment resulted in rapid changes in physiological characteristics and silver concentration in plant tissue at the beginning of each AgNPs exposure (6 h, 36 h, and 9 days), while continuous AgNP and sulfidized AgNP chronic treatments gave delayed responses. Both E. densa and J. effusus enhanced their tolerance to AgNPs toxicity by increasing POD and SOD activities to scavenge free radicals but at different growth phases. Chlorophyll did not change. After AgNPs exposure, MDA, an index of membrane damage, was higher in submerged E. densa than emergent J. effusus, which suggested that engineered nanoparticles exerted more stress to submerged macrophytes.


Assuntos
Nanopartículas Metálicas , Prata , Ecossistema , Malondialdeído , Superóxido Dismutase
6.
Environ Sci Technol ; 52(7): 4072-4078, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29505250

RESUMO

During nanoparticle environmental exposure, presence in the water column is expected to dominate long distance transport as well as initial aquatic organism exposure. Much work has been done to understand potential ecological and toxicological effects of these particles. However, little has been done to date to understand the comparative persistence of engineered particles in realistic environmental systems. Presented here is a study of the water column lifetimes of 3 different classes of nanoparticles prepared with a combination of surface chemistries in wetland mesocosms. We find that, when introduced as a single pulse, all tested nanoparticles persist in the water column for periods ranging from 36 h to 10 days. Specifically, we found a range of nanoparticle residence times in the order Ag > TiO2 > SWCNT > CeO2. We further explored the hypothesis that heteroaggregation was the primary driving factor for nanoparticle removal from the water column in all but one case, and that values of surface affinity (α) measured in the laboratory appear to predict relative removal rates when heteroaggregation dominates. Though persistence in the water column was relatively short in all cases, differences in persistence may play a role in determining nanoparticle fate and impacts and were poorly predicted by currently prevailing benchmarks such as particle surface preparation.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Ecossistema , Água
7.
Environ Sci Technol ; 52(17): 9768-9776, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30067347

RESUMO

Trace metals associated with nanoparticles are known to possess reactivities that are different from their larger-size counterparts. However, the relative importance of small relative to large particles for the overall distribution and biouptake of these metals is not as well studied in complex environmental systems. Here, we have examined differences in the long term fate and transport of ceria (CeO2) nanoparticles of two different sizes (3.8 vs 185 nm), dosed weekly to freshwater wetland mesocosms over 9 months. While the majority of CeO2 particles were detected in soils and sediments at the end of nine months, there were significant differences observed in fate, distribution, and transport mechanisms between the two materials. Small nanoparticles were removed from the water column primarily through heteroaggregation with suspended solids and plants, while large nanoparticles were removed primarily by sedimentation. A greater fraction of small particles remained in the upper floc layers of sediment relative to the large particles (31% vs 7%). Cerium from the small particles were also significantly more bioavailable to aquatic plants (2% vs 0.5%), snails (44 vs 2.6 ng), and insects (8 vs 0.07 µg). Small CeO2 particles were also significantly reduced from Ce(IV) to Ce(III), while aquatic sediments were a sink for untransformed large nanoparticles. These results demonstrate that trace metals originating from nanoscale materials have much greater potential than their larger counterparts to distribute throughout multiple compartments of a complex aquatic ecosystem and contribute to the overall bioavailable pool of the metal for biouptake and trophic transfer.


Assuntos
Cério , Nanopartículas Metálicas , Nanopartículas , Animais , Ecossistema , Água Doce , Áreas Alagadas
8.
Ecology ; 98(1): 265-277, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27918615

RESUMO

Aquatic herbivores impose top-down control on the structure of wetland ecosystems, but the biogeochemical consequences of herbivory on methane (CH4 ) and nitrogen (N) are poorly known. To investigate the top-down effects of waterfowl on wetland biogeochemistry, we implemented exclosure experiments in a major waterfowl overwintering wetland in the southeastern United States over two growing seasons. We found that herbivory inhibited the oxidation of CH4 , leading to a mean increase in emission by 230% over control plots, and prevented nitrification, as indicated by low nitrate availability and undetectable emissions of nitrous oxide. Herbivory reduced belowground biomass of macrophytes, retarding the subsequent spring emergence of aerenchymous stems, effectively starving wetland soils of oxygen necessary for CH4 oxidation and nitrification. The recognition that important populations of aquatic herbivores may influence the capacity for wetlands to emit greenhouse gases and cycle N is particularly salient in the context of climate change and nutrient pollution mitigation goals. For example, our results suggest that (1) annual emissions of 23 Gg CH4 /yr from ~57 000 ha of publicly owned waterfowl impoundments in the southeastern United States could be tripled by overgrazing and that (2) waterfowl impoundments may export as much N as agricultural fields. We discuss potential implications for habitat management in the context of historic wetland loss and waterfowl population recovery.


Assuntos
Aves/fisiologia , Metano/metabolismo , Ciclo do Nitrogênio , Áreas Alagadas , Animais , Dióxido de Carbono , Nitrogênio , Óxido Nitroso
9.
Ecol Appl ; 25(3): 753-67, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26214920

RESUMO

Climate change is predicted to impact river systems in the southeastern United States through alterations of temperature, patterns of precipitation and hydrology. Future climate scenarios for the southeastern United States predict (1) surface water temperatures will warm in concert with air temperature, (2) storm flows will increase and base flows will decrease, and (3) the annual pattern of synchronization between hydroperiod and water temperature will be altered. These alterations are expected to disturb floodplain plant communities, making them more vulnerable to establishment of invasive species. The primary objective of this study is to evaluate whether native and invasive riparian plant assemblages respond differently to alterations of climate and land use. To study the response of riparian wetlands to watershed and climate alterations, we utilized an existing natural experiment imbedded in gradients of temperature and hydrology-found among dammed and undammed rivers. We evaluated a suite of environmental variables related to water temperature, hydrology, watershed disturbance, and edaphic conditions to identify the strongest predictors of native and invasive species abundances. We found that native species abundance is strongly influenced by climate-driven variables such as temperature and hydrology, while invasive species abundance is more strongly influenced by site-specific factors such as land use and soil nutrient availability. The patterns of synchronization between plant phenology, annual hydrographs, and annual water temperature cycles may be key factors sustaining the viability of native riparian plant communities. Our results demonstrate the need to understand the interactions between climate, land use, and nutrient management in maintaining the species diversity of riparian plant communities. Future climate change is likely to result in diminished competitiveness of native plant species, while the competitiveness of invasive species will increase due to anthropogenic watershed disturbance and accelerated nutrient and sediment export.


Assuntos
Mudança Climática , Monitoramento Ambiental , Espécies Introduzidas , Plantas/classificação , Áreas Alagadas , Animais , Meio Ambiente , Temperatura
10.
Environ Sci Technol ; 48(9): 5229-36, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24693948

RESUMO

The use of antimicrobial silver nanoparticles (AgNPs) in consumer-products is rising. Much of these AgNPs are expected to enter the wastewater stream, with up to 10% of that eventually released as effluent into aquatic ecosystems with unknown ecological consequences. We examined AgNP impacts on aquatic ecosystems by comparing the effects of two AgNP sizes (12 and 49 nm) to ionic silver (Ag(+); added as AgNO3), a historically problematic contaminant with known impacts. Using 19 wetland mesocosms, we added Ag to the 360 L aquatic compartment to reach 2.5 mg Ag L(-1). Silver treatments and two coating controls were done in triplicate, and compared to four replicate controls. All three silver treatments were toxic to aquatic plants, leading to a significant release of dissolved organic carbon and chloride following exposure. Simultaneously, dissolved methane concentrations increased forty-fold relative to controls in all three Ag treatments. Despite dramatic toxicity differences observed in lab studies for these three forms of Ag, our results show surprising convergence in the direction, magnitude, and duration of ecosystem-scale impacts for all Ag treatments. Our results suggest that all forms of Ag changed solute chemistry driving transformations of Ag which then altered Ag impacts.


Assuntos
Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Áreas Alagadas , Nanopartículas Metálicas/química , Tamanho da Partícula , Plantas/efeitos dos fármacos , Reprodutibilidade dos Testes , Prata/química
11.
Sci Total Environ ; 894: 164995, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37343878

RESUMO

Coastal wetlands provide critical ecosystem services but are experiencing disruptions caused by inundation and saltwater intrusion under intensified climate change, sea-level rise, and anthropogenic activities. Recent studies have shown that these disturbances downgraded coastal wetlands mainly through affecting their hydrological processes. However, research on what is the most critical driver for wetland downgrading and how it affects coastal wetlands is still in its infancy. This study examined drivers of three types of wetland downgrading, including woody wetland loss, emergent herbaceous wetland loss, and woody wetlands converting to emergent herbaceous wetlands. By using random forest classification models for the wetland ecosystems in the Alligator River National Wildlife Refuge, North Carolina, USA, during 1995-2019, we determined the relative importance of different hydrogeomorphic processes and the dominant variables in driving the wetland downgrading. Results showed that random forest classification models were accurate (> 97 % overall accuracy) in classifying wetland downgrading. Multiple hydrogeomorphic variables collectively contributed to the coastal wetland downgrading. However, the dominant control factors varied across different types of wetland downgrading. Woody wetlands were most susceptible to saltwater intrusion and were likely to downgrade if the saltwater table was shallower than 0.2 m below the land surface. In contrast, emergent herbaceous wetlands were most vulnerable to inundation and drought. The favorable groundwater table for emergent herbaceous wetlands was between 0.34 m above the land surface and 0.32 m below the land surface, beyond which the emergent herbaceous wetland tended to disappear. For downgraded woody wetlands, their distance to canals/ditches played a crucial role in determining their fates after downgrading. The machine learning approach employed in this study provided critical knowledge about the thresholds of hydrogeomorphic variables for the downgrading of different types of coastal wetlands. Such information can help guide effective and targeted coastal wetland conservation, management, and restoration measures.

12.
Environ Sci Technol ; 46(13): 7027-36, 2012 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-22463850

RESUMO

Transformations and long-term fate of engineered nanomaterials must be measured in realistic complex natural systems to accurately assess the risks that they may pose. Here, we determine the long-term behavior of poly(vinylpyrrolidone)-coated silver nanoparticles (AgNPs) in freshwater mesocosms simulating an emergent wetland environment. AgNPs were either applied to the water column or to the terrestrial soils. The distribution of silver among water, solids, and biota, and Ag speciation in soils and sediment was determined 18 months after dosing. Most (70 wt %) of the added Ag resided in the soils and sediments, and largely remained in the compartment in which they were dosed. However, some movement between soil and sediment was observed. Movement of AgNPs from terrestrial soils to sediments was more facile than from sediments to soils, suggesting that erosion and runoff is a potential pathway for AgNPs to enter waterways. The AgNPs in terrestrial soils were transformed to Ag(2)S (~52%), whereas AgNPs in the subaquatic sediment were present as Ag(2)S (55%) and Ag-sulfhydryl compounds (27%). Despite significant sulfidation of the AgNPs, a fraction of the added Ag resided in the terrestrial plant biomass (~3 wt % for the terrestrially dosed mesocosm), and relatively high body burdens of Ag (0.5-3.3 µg Ag/g wet weight) were found in mosquito fish and chironomids in both mesocosms. Thus, Ag from the NPs remained bioavailable even after partial sulfidation and when water column total Ag concentrations are low (<0.002 mg/L).


Assuntos
Água Doce/química , Nanopartículas/química , Povidona/química , Prata/química , Poluentes Químicos da Água/química , Áreas Alagadas , Adsorção , Animais , Peixes/metabolismo , Sedimentos Geológicos/química , Insetos/metabolismo , Movimento (Física) , Nanopartículas/análise , Oxirredução , Plantas/metabolismo , Povidona/análise , Povidona/metabolismo , Prata/análise , Prata/metabolismo , Solo/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo
13.
Ecol Appl ; 21(3): 715-28, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21639039

RESUMO

As the human footprint expands, ecologists and resource managers are increasingly challenged to explain and manage abrupt ecosystem transformations (i.e., regime shifts). In this study, we investigated the role of a mechanical disturbance that has been used to restore and maintain local wetland diversity after a monotypic regime shift in northwestern Costa Rica [specifically, an abrupt landscape-scale cattail (Typha) expansion]. The study was conducted in Palo Verde Marsh (Palo Verde National Park; a RAMSAR Wetland of International Importance), a seasonally flooded freshwater wetland that has historically provided habitat for large populations of wading birds and waterfowl. A cattail (T. domingensis) expansion in the 1980s greatly altered the plant community and reduced avian habitat. Since then, Typha has been managed using a form of mechanical disturbance called fangueo (a Spanish word, pronounced "fahn-gay-yo" in English). We applied a Typha removal treatment at three levels (control, fangueo, and fangueo with fencing to exclude cattle grazing). Fangueo resulted in a large reduction in Typha dominance (i.e., decreased aboveground biomass, ramet density, and ramet height) and an increase in habitat heterogeneity. As in many ecosystems that have been defined by multiple and frequent disturbances, a large portion of the plant community regenerated after disturbance (via propagule banking) and fangueo resulted in a more diverse plant community that was strongly dictated by seasonal processes (i.e., distinct wet- and dry-season assemblages). Importantly, the mechanical disturbance had no apparent short-term impact on any of the soil properties we measured (including bulk density). Interestingly, low soil and foliar N:P values indicate that Palo Verde Marsh and other wetlands in the region may be nitrogen limited. Our results quantify how, in a cultural landscape where the historical disturbance regime has been altered and diversity has declined, a mechanical disturbance in combination with seasonal drought and flooding has been used to locally restrict a clonal monodominant plant expansion, create habitat heterogeneity, and maintain plant diversity.


Assuntos
Biodiversidade , Estações do Ano , Clima Tropical , Typhaceae/fisiologia , Áreas Alagadas , Biomassa , Costa Rica , Monitoramento Ambiental , Densidade Demográfica , Sementes , Solo
14.
Proc Natl Acad Sci U S A ; 105(46): 17842-7, 2008 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-19004771

RESUMO

Soil bacteria regulate wetland biogeochemical processes, yet little is known about controls over their distribution and abundance. Bacteria in North Carolina swamps and bogs differ greatly from Florida Everglades fens, where communities studied were unexpectedly similar along a nutrient enrichment gradient. Bacterial composition and diversity corresponded strongly with soil pH, land use, and restoration status, but less to nutrient concentrations, and not with wetland type or soil carbon. Surprisingly, wetland restoration decreased bacterial diversity, a response opposite to that in terrestrial ecosystems. Community level patterns were underlain by responses of a few taxa, especially the Acidobacteria and Proteobacteria, suggesting promise for bacterial indicators of restoration and trophic status.


Assuntos
Bactérias/genética , Microbiologia do Solo , Solo , Áreas Alagadas , Bactérias/classificação , Água Doce , Humanos , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , North Carolina , Filogenia , Análise de Componente Principal , RNA Ribossômico 16S/genética
15.
J Environ Qual ; 39(6): 1954-65, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21284292

RESUMO

Growing concerns over the potential for unintended, adverse consequences of engineered nanoparticles (ENPs) in the environment have generated new research initiatives focused on understanding the ecological effects of ENPs. Almost nothing is currently known about the fate and transport of ENPs in environmental waters, soils, and sediments or about the biological impacts of ENPs in natural environments, and the bulk of modern nanotoxicogical research is focused on highly controlled laboratory studies with single species in simple media. In this paper, we provide an ecological perspective on the current state of knowledge regarding the likely environmental impacts of nanomaterials and propose a strategy for making rapid progress in new research in ecological nanoscience.


Assuntos
Ecossistema , Meio Ambiente , Nanoestruturas , Monitoramento Ambiental , Pesquisa
16.
J Environ Qual ; 48(3): 645-653, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31180434

RESUMO

Increased dissolved reactive phosphorus (DRP) fluxes in the Maumee River in the Western Lake Erie watershed have been cited as a cause of recent hypoxia and toxic algal blooms in Western Lake Erie. Dissolved reactive P is operationally defined as the molybdate-reactive P that passes through a 0.45-µm filter. Unfortunately, this 0.45-µm cutoff is not based on solute chemistry; rather, it is based on tradition dating back to the 1940s. This dissolved versus particulate operationally defined threshold may be limiting scientific understanding of the transport of reactive P in the Lake Erie watershed (and beyond). Naturally occurring nanoparticles smaller than 0.45 µm can pass through filters, inflating DRP values, as has been suggested by studies in other watersheds. Transmission electron microscopy of filtered samples from the Maumee River revealed nanoparticles of various mineralogy, which are rich in P. By analyzing public data, we estimate that approximately half of the DRP flux in the Maumee River is not truly dissolved orthophosphate; it is instead particulate P that has passed through 0.45-µm filters. We also conducted a centrifugation experiment on previously filtered samples that likewise removed 40% of DRP and 75% of Fe. The influence of nanoparticles on DRP loads to Lake Erie has implications, including (i) helping to elucidate where reactive P originates on the landscape, (ii) designing best management practices, and (iii) improving our models of ecological response of nonpoint P loading.


Assuntos
Lagos , Nanopartículas , Monitoramento Ambiental , Fósforo , Rios
17.
Ambio ; 47(Suppl 1): 124-133, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29164536

RESUMO

Particulate phosphorus (PP) is often the largest component of the total phosphorus (P) load in stormwater. Fine-resolution measurement of particle sizes allows us to investigate the mechanisms behind the removal of PP in stormwater wetlands, since the diameter of particles influences the settling velocity and the amount of sorbed P on a particle. In this paper, we present a novel method to estimate PP, where we measure and count individual particles in stormwater and use the total surface area as a proxy for PP. Our results show a strong relationship between total particle surface area and PP, which we use to put forth a simple mechanistic model of PP removal via gravitational settling of individual mineral particles, based on a continuous particle size distribution. This information can help improve the design of stormwater Best management practices to reduce PP loading in both urban and agricultural watersheds.


Assuntos
Fósforo/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Agricultura , Tamanho da Partícula , Fósforo/química , Poluentes Químicos da Água/química , Áreas Alagadas
18.
Water Res ; 130: 312-321, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29247947

RESUMO

Authigenic nanoparticles containing iron (Fe) and phosphorus (P) have been identified at the anoxic/oxic interface of various aquatic ecosystems, forming upon the oxidation of reduced Fe. Little is known about the prevalence of these authigenic nanoparticles in streams, their impact on biogeochemical fluxes, or the bioavailability of P associated with them. In this paper we used transmission electron microscopy to document the presence of authigenic (amorphous) nanoparticles, rich in Fe and P, in baseflow of streams in the Southern Piedmont region of the U.S. We used a simple centrifugation and ultrafiltration technique to separate authigenic nanoparticles from truly dissolved (<1 kDa) and crystalline mineral/coarse organic fractions in baseflow, employing three different quality control methods to verify a successful separation: X-ray diffraction, electron microscopy, and stoichiometry of Fe and aluminum. This allowed us to quantify the amount of Fe and P in three different fractions of baseflow: truly dissolved, authigenic nanoparticles, and crystalline mineral/coarse organic particles. For the rural and urban stream in our study, on average, authigenic nanoparticles in baseflow transport 66% of Fe, with baseflow concentrations ranging from 80 µg/L to 650 µg/L. Authigenic nanoparticles also transport an average of 38% of reactive P, depending upon seasonality and time elapsed since the last storm event.


Assuntos
Ferro/análise , Nanopartículas/análise , Fósforo/análise , Poluentes Químicos da Água/análise , Alumínio/química , Ferro/química , Microscopia Eletrônica de Transmissão , Nanopartículas/química , North Carolina , Fósforo/química , Rios/química , Estações do Ano , Ultrafiltração , Poluentes Químicos da Água/química , Difração de Raios X
19.
Nat Commun ; 9(1): 3640, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30194308

RESUMO

Peatlands represent large terrestrial carbon banks. Given that most peat accumulates in boreal regions, where low temperatures and water saturation preserve organic matter, the existence of peat in (sub)tropical regions remains enigmatic. Here we examined peat and plant chemistry across a latitudinal transect from the Arctic to the tropics. Near-surface low-latitude peat has lower carbohydrate and greater aromatic content than near-surface high-latitude peat, creating a reduced oxidation state and resulting recalcitrance. This recalcitrance allows peat to persist in the (sub)tropics despite warm temperatures. Because we observed similar declines in carbohydrate content with depth in high-latitude peat, our data explain recent field-scale deep peat warming experiments in which catotelm (deeper) peat remained stable despite temperature increases up to 9 °C. We suggest that high-latitude deep peat reservoirs may be stabilized in the face of climate change by their ultimately lower carbohydrate and higher aromatic composition, similar to tropical peats.

20.
Sci Adv ; 4(11): eaat1869, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30443593

RESUMO

Limiting climate warming to <2°C requires increased mitigation efforts, including land stewardship, whose potential in the United States is poorly understood. We quantified the potential of natural climate solutions (NCS)-21 conservation, restoration, and improved land management interventions on natural and agricultural lands-to increase carbon storage and avoid greenhouse gas emissions in the United States. We found a maximum potential of 1.2 (0.9 to 1.6) Pg CO2e year-1, the equivalent of 21% of current net annual emissions of the United States. At current carbon market prices (USD 10 per Mg CO2e), 299 Tg CO2e year-1 could be achieved. NCS would also provide air and water filtration, flood control, soil health, wildlife habitat, and climate resilience benefits.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa