RESUMO
Several vaccines have been introduced to combat the coronavirus infectious disease-2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Current SARS-CoV-2 vaccines include mRNA-containing lipid nanoparticles or adenoviral vectors that encode the SARS-CoV-2 Spike (S) protein of SARS-CoV-2, inactivated virus, or protein subunits. Despite growing success in worldwide vaccination efforts, additional capabilities may be needed in the future to address issues such as stability and storage requirements, need for vaccine boosters, desirability of different routes of administration, and emergence of SARS-CoV-2 variants such as the Delta variant. Here, we present a novel, well-characterized SARS-CoV-2 vaccine candidate based on extracellular vesicles (EVs) of Salmonella typhimurium that are decorated with the mammalian cell culture-derived Spike receptor-binding domain (RBD). RBD-conjugated outer membrane vesicles (RBD-OMVs) were used to immunize the golden Syrian hamster ( Mesocricetus auratus ) model of COVID-19. Intranasal immunization resulted in high titers of blood anti-RBD IgG as well as detectable mucosal responses. Neutralizing antibody activity against wild-type and Delta variants was evident in all vaccinated subjects. Upon challenge with live virus, hamsters immunized with RBD-OMV, but not animals immunized with unconjugated OMVs or a vehicle control, avoided body mass loss, had lower virus titers in bronchoalveolar lavage fluid, and experienced less severe lung pathology. Our results emphasize the value and versatility of OMV-based vaccine approaches.
RESUMO
Traumatic brain injury (TBI) affects 10 million people worldwide, annually. TBI is linked to increased risk of psychiatric disorders. TBI, induced by explosive devices, has a unique phenotype. Over one-third of people exposed to blast-induced TBI (bTBI) have prolonged neuroendocrine deficits, shown by anterior pituitary dysfunction. Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is linked to increased risk for psychiatric disorders. Not only is there limited information on how the HPA axis responds to mild bTBI (mbTBI), sex differences are understudied. We examined central and peripheral HPA axis reactivity, 7 to 10 days after mbTBI in male and female mice. Males exposed to mbTBI had increased restraint-induced serum corticosterone (CORT), but attenuated restraint-induced corticotropin-releasing factor (CRF)/c-Fos-immunoreactivity (ir) in the paraventricular nucleus of the hypothalamus (PVN). Females displayed an opposite response, with attenuated restraint-induced CORT and enhanced restraint-induced PVN CRF/c-Fos-ir. We examined potential mechanisms underlying this dysregulation and found that mbTBI did not affect pituitary (pro-opiomelanocortin and CRF receptor subtype 1) or adrenal (11ß-hydroxylase, 11ß-dehydrogenase 1, and melanocortin 2 receptor) gene expression. mbTBI did not alter mineralocorticoid or glucocorticoid gene expression in the PVN or relevant limbic structures. In females, but not males, mbTBI decreased c-Fos-ir in non-neuroendocrine (presumably preautonomic) CRF neurons in the PVN. Whereas we demonstrated a sex-dependent link to stress dysregulation of preautonomic neurons in females, we hypothesize that mbTBI may disrupt limbic pathways involved in HPA axis coordination in males. Overall, mbTBI altered the HPA axis in a sex-dependent manner, highlighting the importance of developing therapies to target individual strategies that males and females use to cope with mbTBI.