Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Methods ; 21(2): 195-212, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38347141

RESUMO

Increasing evidence shows that flaws in machine learning (ML) algorithm validation are an underestimated global problem. In biomedical image analysis, chosen performance metrics often do not reflect the domain interest, and thus fail to adequately measure scientific progress and hinder translation of ML techniques into practice. To overcome this, we created Metrics Reloaded, a comprehensive framework guiding researchers in the problem-aware selection of metrics. Developed by a large international consortium in a multistage Delphi process, it is based on the novel concept of a problem fingerprint-a structured representation of the given problem that captures all aspects that are relevant for metric selection, from the domain interest to the properties of the target structure(s), dataset and algorithm output. On the basis of the problem fingerprint, users are guided through the process of choosing and applying appropriate validation metrics while being made aware of potential pitfalls. Metrics Reloaded targets image analysis problems that can be interpreted as classification tasks at image, object or pixel level, namely image-level classification, object detection, semantic segmentation and instance segmentation tasks. To improve the user experience, we implemented the framework in the Metrics Reloaded online tool. Following the convergence of ML methodology across application domains, Metrics Reloaded fosters the convergence of validation methodology. Its applicability is demonstrated for various biomedical use cases.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Aprendizado de Máquina , Semântica
2.
Gastrointest Endosc ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38639679

RESUMO

BACKGROUND AND AIMS: The American Society for Gastrointestinal Endoscopy (ASGE) AI Task Force along with experts in endoscopy, technology space, regulatory authorities, and other medical subspecialties initiated a consensus process that analyzed the current literature, highlighted potential areas, and outlined the necessary research in artificial intelligence (AI) to allow a clearer understanding of AI as it pertains to endoscopy currently. METHODS: A modified Delphi process was used to develop these consensus statements. RESULTS: Statement 1: Current advances in AI allow for the development of AI-based algorithms that can be applied to endoscopy to augment endoscopist performance in detection and characterization of endoscopic lesions. Statement 2: Computer vision-based algorithms provide opportunities to redefine quality metrics in endoscopy using AI, which can be standardized and can reduce subjectivity in reporting quality metrics. Natural language processing-based algorithms can help with the data abstraction needed for reporting current quality metrics in GI endoscopy effortlessly. Statement 3: AI technologies can support smart endoscopy suites, which may help optimize workflows in the endoscopy suite, including automated documentation. Statement 4: Using AI and machine learning helps in predictive modeling, diagnosis, and prognostication. High-quality data with multidimensionality are needed for risk prediction, prognostication of specific clinical conditions, and their outcomes when using machine learning methods. Statement 5: Big data and cloud-based tools can help advance clinical research in gastroenterology. Multimodal data are key to understanding the maximal extent of the disease state and unlocking treatment options. Statement 6: Understanding how to evaluate AI algorithms in the gastroenterology literature and clinical trials is important for gastroenterologists, trainees, and researchers, and hence education efforts by GI societies are needed. Statement 7: Several challenges regarding integrating AI solutions into the clinical practice of endoscopy exist, including understanding the role of human-AI interaction. Transparency, interpretability, and explainability of AI algorithms play a key role in their clinical adoption in GI endoscopy. Developing appropriate AI governance, data procurement, and tools needed for the AI lifecycle are critical for the successful implementation of AI into clinical practice. Statement 8: For payment of AI in endoscopy, a thorough evaluation of the potential value proposition for AI systems may help guide purchasing decisions in endoscopy. Reliable cost-effectiveness studies to guide reimbursement are needed. Statement 9: Relevant clinical outcomes and performance metrics for AI in gastroenterology are currently not well defined. To improve the quality and interpretability of research in the field, steps need to be taken to define these evidence standards. Statement 10: A balanced view of AI technologies and active collaboration between the medical technology industry, computer scientists, gastroenterologists, and researchers are critical for the meaningful advancement of AI in gastroenterology. CONCLUSIONS: The consensus process led by the ASGE AI Task Force and experts from various disciplines has shed light on the potential of AI in endoscopy and gastroenterology. AI-based algorithms have shown promise in augmenting endoscopist performance, redefining quality metrics, optimizing workflows, and aiding in predictive modeling and diagnosis. However, challenges remain in evaluating AI algorithms, ensuring transparency and interpretability, addressing governance and data procurement, determining payment models, defining relevant clinical outcomes, and fostering collaboration between stakeholders. Addressing these challenges while maintaining a balanced perspective is crucial for the meaningful advancement of AI in gastroenterology.

3.
Bipolar Disord ; 26(5): 468-478, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38639725

RESUMO

INTRODUCTION: Alterations in motor activity are well-established symptoms of bipolar disorder, and time series of motor activity can be considered complex dynamical systems. In such systems, early warning signals (EWS) occur in a critical transition period preceding a sudden shift (tipping point) in the system. EWS are statistical observations occurring due to a system's declining ability to maintain homeostasis when approaching a tipping point. The aim was to identify critical transition periods preceding bipolar mood state changes. METHODS: Participants with a validated bipolar diagnosis were included to a one-year follow-up study, with repeated assessments of the participants' mood. Motor activity was recorded continuously by a wrist-worn actigraph. Participants assessed to have relapsed during follow-up were analyzed. Recognized EWS features were extracted from the motor activity data and analyzed by an unsupervised change point detection algorithm, capable of processing multi-dimensional data and developed to identify when the statistical property of a time series changes. RESULTS: Of 49 participants, four depressive and four hypomanic/manic relapses among six individuals occurred, recording actigraphy for 23.8 ± 0.2 h/day, for 39.8 ± 4.6 days. The algorithm detected change points in the time series and identified critical transition periods spanning 13.5 ± 7.2 days. For depressions 11.4 ± 1.8, and hypomania/mania 15.6 ± 10.2 days. CONCLUSION: The change point detection algorithm seems capable of recognizing impending mood episodes in continuous flowing data streams. Hence, we present an innovative method for forecasting approaching relapses to improve the clinical management of bipolar disorder.


Assuntos
Actigrafia , Transtorno Bipolar , Humanos , Transtorno Bipolar/fisiopatologia , Transtorno Bipolar/diagnóstico , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Seguimentos , Atividade Motora/fisiologia , Afeto/fisiologia , Algoritmos , Mania
4.
BMC Health Serv Res ; 23(1): 1047, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777722

RESUMO

BACKGROUND: e-Health has played a crucial role during the COVID-19 pandemic in primary health care. e-Health is the cost-effective and secure use of Information and Communication Technologies (ICTs) to support health and health-related fields. Various stakeholders worldwide use ICTs, including individuals, non-profit organizations, health practitioners, and governments. As a result of the COVID-19 pandemic, ICT has improved the quality of healthcare, the exchange of information, training of healthcare professionals and patients, and facilitated the relationship between patients and healthcare providers. This study systematically reviews the literature on ICT-based automatic and remote monitoring methods, as well as different ICT techniques used in the care of COVID-19-infected patients. OBJECTIVE: The purpose of this systematic literature review is to identify the e-Health methods, associated ICTs, method implementation strategies, information collection techniques, advantages, and disadvantages of remote and automatic patient monitoring and care in COVID-19 pandemic. METHODS: The search included primary studies that were published between January 2020 and June 2022 in scientific and electronic databases, such as EBSCOhost, Scopus, ACM, Nature, SpringerLink, IEEE Xplore, MEDLINE, Google Scholar, JMIR, Web of Science, Science Direct, and PubMed. In this review, the findings from the included publications are presented and elaborated according to the identified research questions. Evidence-based systematic reviews and meta-analyses were conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) framework. Additionally, we improved the review process using the Rayyan tool and the Scale for the Assessment of Narrative Review Articles (SANRA). Among the eligibility criteria were methodological rigor, conceptual clarity, and useful implementation of ICTs in e-Health for remote and automatic monitoring of COVID-19 patients. RESULTS: Our initial search identified 664 potential studies; 102 were assessed for eligibility in the pre-final stage and 65 articles were used in the final review with the inclusion and exclusion criteria. The review identified the following eHealth methods-Telemedicine, Mobile Health (mHealth), and Telehealth. The associated ICTs are Wearable Body Sensors, Artificial Intelligence (AI) algorithms, Internet-of-Things, or Internet-of-Medical-Things (IoT or IoMT), Biometric Monitoring Technologies (BioMeTs), and Bluetooth-enabled (BLE) home health monitoring devices. Spatial or positional data, personal and individual health, and wellness data, including vital signs, symptoms, biomedical images and signals, and lifestyle data are examples of information that is managed by ICTs. Different AI and IoT methods have opened new possibilities for automatic and remote patient monitoring with associated advantages and weaknesses. Our findings were represented in a structured manner using a semantic knowledge graph (e.g., ontology model). CONCLUSIONS: Various e-Health methods, related remote monitoring technologies, different approaches, information categories, the adoption of ICT tools for an automatic remote patient monitoring (RPM), advantages and limitations of RMTs in the COVID-19 case are discussed in this review. The use of e-Health during the COVID-19 pandemic illustrates the constraints and possibilities of using ICTs. ICTs are not merely an external tool to achieve definite remote and automatic health monitoring goals; instead, they are embedded in contexts. Therefore, the importance of the mutual design process between ICT and society during the global health crisis has been observed from a social informatics perspective. A global health crisis can be observed as an information crisis (e.g., insufficient information, unreliable information, and inaccessible information); however, this review shows the influence of ICTs on COVID-19 patients' health monitoring and related information collection techniques.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Pandemias , Inteligência Artificial , Atenção à Saúde , Monitorização Fisiológica
5.
BMC Med Inform Decis Mak ; 23(1): 278, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38041041

RESUMO

BACKGROUND: Automated coaches (eCoach) can help people lead a healthy lifestyle (e.g., reduction of sedentary bouts) with continuous health status monitoring and personalized recommendation generation with artificial intelligence (AI). Semantic ontology can play a crucial role in knowledge representation, data integration, and information retrieval. METHODS: This study proposes a semantic ontology model to annotate the AI predictions, forecasting outcomes, and personal preferences to conceptualize a personalized recommendation generation model with a hybrid approach. This study considers a mixed activity projection method that takes individual activity insights from the univariate time-series prediction and ensemble multi-class classification approaches. We have introduced a way to improve the prediction result with a residual error minimization (REM) technique and make it meaningful in recommendation presentation with a Naïve-based interval prediction approach. We have integrated the activity prediction results in an ontology for semantic interpretation. A SPARQL query protocol and RDF Query Language (SPARQL) have generated personalized recommendations in an understandable format. Moreover, we have evaluated the performance of the time-series prediction and classification models against standard metrics on both imbalanced and balanced public PMData and private MOX2-5 activity datasets. We have used Adaptive Synthetic (ADASYN) to generate synthetic data from the minority classes to avoid bias. The activity datasets were collected from healthy adults (n = 16 for public datasets; n = 15 for private datasets). The standard ensemble algorithms have been used to investigate the possibility of classifying daily physical activity levels into the following activity classes: sedentary (0), low active (1), active (2), highly active (3), and rigorous active (4). The daily step count, low physical activity (LPA), medium physical activity (MPA), and vigorous physical activity (VPA) serve as input for the classification models. Subsequently, we re-verify the classifiers on the private MOX2-5 dataset. The performance of the ontology has been assessed with reasoning and SPARQL query execution time. Additionally, we have verified our ontology for effective recommendation generation. RESULTS: We have tested several standard AI algorithms and selected the best-performing model with optimized configuration for our use case by empirical testing. We have found that the autoregression model with the REM method outperforms the autoregression model without the REM method for both datasets. Gradient Boost (GB) classifier outperforms other classifiers with a mean accuracy score of 98.00%, and 99.00% for imbalanced PMData and MOX2-5 datasets, respectively, and 98.30%, and 99.80% for balanced PMData and MOX2-5 datasets, respectively. Hermit reasoner performs better than other ontology reasoners under defined settings. Our proposed algorithm shows a direction to combine the AI prediction forecasting results in an ontology to generate personalized activity recommendations in eCoaching. CONCLUSION: The proposed method combining step-prediction, activity-level classification techniques, and personal preference information with semantic rules is an asset for generating personalized recommendations.


Assuntos
Inteligência Artificial , Heurística , Humanos , Semântica , Algoritmos , Armazenamento e Recuperação da Informação
6.
Sensors (Basel) ; 23(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36850686

RESUMO

The interest in video anomaly detection systems that can detect different types of anomalies, such as violent behaviours in surveillance videos, has gained traction in recent years. The current approaches employ deep learning to perform anomaly detection in videos, but this approach has multiple problems. For example, deep learning in general has issues with noise, concept drift, explainability, and training data volumes. Additionally, anomaly detection in itself is a complex task and faces challenges such as unknownness, heterogeneity, and class imbalance. Anomaly detection using deep learning is therefore mainly constrained to generative models such as generative adversarial networks and autoencoders due to their unsupervised nature; however, even they suffer from general deep learning issues and are hard to properly train. In this paper, we explore the capabilities of the Hierarchical Temporal Memory (HTM) algorithm to perform anomaly detection in videos, as it has favorable properties such as noise tolerance and online learning which combats concept drift. We introduce a novel version of HTM, named GridHTM, which is a grid-based HTM architecture specifically for anomaly detection in complex videos such as surveillance footage. We have tested GridHTM using the VIRAT video surveillance dataset, and the subsequent evaluation results and online learning capabilities prove the great potential of using our system for real-time unsupervised anomaly detection in complex videos.

7.
Sensors (Basel) ; 22(7)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35408416

RESUMO

Many data related problems involve handling multiple data streams of different types at the same time. These problems are both complex and challenging, and researchers often end up using only one modality or combining them via a late fusion based approach. To tackle this challenge, we develop and investigate the usefulness of a novel deep learning method called tower networks. This method is able to learn from multiple input data sources at once. We apply the tower network to the problem of short-term temperature forecasting. First, we compare our method to a number of meteorological baselines and simple statistical approaches. Further, we compare the tower network with two core network architectures that are often used, namely the convolutional neural network (CNN) and convolutional long short-term memory (convLSTM). The methods are compared for the task of weather forecasting performance, and the deep learning methods are also compared in terms of memory usage and training time. The tower network performs well in comparison both with the meteorological baselines, and with the other core architectures. Compared with the state-of-the-art operational Norwegian weather forecasting service, yr.no, the tower network has an overall 11% smaller root mean squared forecasting error. For the core architectures, the tower network documents competitive performance and proofs to be more robust compared to CNN and convLSTM models.


Assuntos
Redes Neurais de Computação , Tempo (Meteorologia) , Previsões , Armazenamento e Recuperação da Informação , Temperatura
8.
Sensors (Basel) ; 22(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35632034

RESUMO

The increasing popularity of social networks and users' tendency towards sharing their feelings, expressions, and opinions in text, visual, and audio content have opened new opportunities and challenges in sentiment analysis. While sentiment analysis of text streams has been widely explored in the literature, sentiment analysis from images and videos is relatively new. This article focuses on visual sentiment analysis in a societally important domain, namely disaster analysis in social media. To this aim, we propose a deep visual sentiment analyzer for disaster-related images, covering different aspects of visual sentiment analysis starting from data collection, annotation, model selection, implementation, and evaluations. For data annotation and analyzing people's sentiments towards natural disasters and associated images in social media, a crowd-sourcing study has been conducted with a large number of participants worldwide. The crowd-sourcing study resulted in a large-scale benchmark dataset with four different sets of annotations, each aiming at a separate task. The presented analysis and the associated dataset, which is made public, will provide a baseline/benchmark for future research in the domain. We believe the proposed system can contribute toward more livable communities by helping different stakeholders, such as news broadcasters, humanitarian organizations, as well as the general public.


Assuntos
Desastres , Mídias Sociais , Coleta de Dados , Humanos , Análise de Sentimentos , Rede Social
9.
J Med Syst ; 44(10): 187, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32929615

RESUMO

In this work, we propose the use of a genetic-algorithm-based attack against machine learning classifiers with the aim of 'stealing' users' biometric actigraphy profiles from health related sensor data. The target classification model uses daily actigraphy patterns for user identification. The biometric profiles are modeled as what we call impersonator examples which are generated based solely on the predictions' confidence score by repeatedly querying the target classifier. We conducted experiments in a black-box setting on a public dataset that contains actigraphy profiles from 55 individuals. The data consists of daily motion patterns recorded with an actigraphy device. These patterns can be used as biometric profiles to identify each individual. Our attack was able to generate examples capable of impersonating a target user with a success rate of 94.5%. Furthermore, we found that the impersonator examples have high transferability to other classifiers trained with the same training set. We also show that the generated biometric profiles have a close resemblance to the ground truth profiles which can lead to sensitive data exposure, like revealing the time of the day an individual wakes-up and goes to bed.


Assuntos
Actigrafia , Roubo , Algoritmos , Biometria , Humanos , Aprendizado de Máquina
10.
J Appl Clin Med Phys ; 20(8): 141-154, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31251460

RESUMO

Wireless capsule endoscopy (WCE) is an effective technology that can be used to make a gastrointestinal (GI) tract diagnosis of various lesions and abnormalities. Due to a long time required to pass through the GI tract, the resulting WCE data stream contains a large number of frames which leads to a tedious job for clinical experts to perform a visual check of each and every frame of a complete patient's video footage. In this paper, an automated technique for bleeding detection based on color and texture features is proposed. The approach combines the color information which is an essential feature for initial detection of frame with bleeding. Additionally, it uses the texture which plays an important role to extract more information from the lesion captured in the frames and allows the system to distinguish finely between borderline cases. The detection algorithm utilizes machine-learning-based classification methods, and it can efficiently distinguish between bleeding and nonbleeding frames and perform pixel-level segmentation of bleeding areas in WCE frames. The performed experimental studies demonstrate the performance of the proposed bleeding detection method in terms of detection accuracy, where we are at least as good as the state-of-the-art approaches. In this research, we have conducted a broad comparison of a number of different state-of-the-art features and classification methods that allows building an efficient and flexible WCE video processing system.


Assuntos
Algoritmos , Endoscopia por Cápsula/métodos , Cor , Hemorragia Gastrointestinal/diagnóstico , Trato Gastrointestinal/patologia , Reconhecimento Automatizado de Padrão/métodos , Gravação em Vídeo/métodos , Hemorragia Gastrointestinal/diagnóstico por imagem , Trato Gastrointestinal/diagnóstico por imagem , Humanos , Aprendizado de Máquina , Tecnologia sem Fio
11.
Anim Reprod ; 21(3): e20240031, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39176005

RESUMO

Assisted reproductive technologies (ART) are fundamental for cattle breeding and sustainable food production. Together with genomic selection, these technologies contribute to reducing the generation interval and accelerating genetic progress. In this paper, we discuss advancements in technologies used in the fertility evaluation of breeding animals, and the collection, processing, and preservation of the gametes. It is of utmost importance for the breeding industry to select dams and sires of the next generation as young as possible, as is the efficient and timely collection of gametes. There is a need for reliable and easily applicable methods to evaluate sexual maturity and fertility. Although gametes processing and preservation have been improved in recent decades, challenges are still encountered. The targeted use of sexed semen and beef semen has obliterated the production of surplus replacement heifers and bull calves from dairy breeds, markedly improving animal welfare and ethical considerations in production practices. Parallel with new technologies, many well-established technologies remain relevant, although with evolving applications. In vitro production (IVP) has become the predominant method of embryo production. Although fundamental improvements in IVP procedures have been established, the quality of IVP embryos remains inferior to their in vivo counterparts. Improvements to facilitate oocyte maturation and development of new culture systems, e.g. microfluidics, are presented in this paper. New non-invasive and objective tools are needed to select embryos for transfer. Cryopreservation of semen and embryos plays a pivotal role in the distribution of genetics, and we discuss the challenges and opportunities in this field. Finally, machine learning (ML) is gaining ground in agriculture and ART. This paper delves into the utilization of emerging technologies in ART, along with the current status, key challenges, and future prospects of ML in both research and practical applications within ART.

12.
Sci Data ; 11(1): 245, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413601

RESUMO

Clouds are important factors when projecting future climate. Unfortunately, future cloud fractional cover (the portion of the sky covered by clouds) is associated with significant uncertainty, making climate projections difficult. In this paper, we present the European Cloud Cover dataset, which can be used to learn statistical relations between cloud cover and other environmental variables, to potentially improve future climate projections. The dataset was created using a novel technique called Area Weighting Regridding Scheme to map satellite observations to cloud fractional cover on the same grid as the other variables in the dataset. Baseline experiments using autoregressive models document that it is possible to use the dataset to predict cloud fractional cover.

13.
Trauma Violence Abuse ; 25(1): 260-274, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-36727734

RESUMO

Livestreaming of child sexual abuse (LSCSA) is an established form of online child sexual exploitation and abuse (OCSEA). However, only a limited body of research has examined this issue. The Covid-19 pandemic has accelerated internet use and user knowledge of livestreaming services emphasizing the importance of understanding this crime. In this scoping review, existing literature was brought together through an iterative search of eight databases containing peer-reviewed journal articles, as well as grey literature. Records were eligible for inclusion if the primary focus was on livestream technology and OCSEA, the child being defined as eighteen years or younger. Fourteen of the 2,218 records were selected. The data were charted and divided into four categories: victims, offenders, legislation, and technology. Limited research, differences in terminology, study design, and population inclusion criteria present a challenge to drawing general conclusions on the current state of LSCSA. The records show that victims are predominantly female. The average livestream offender was found to be older than the average online child sexual abuse offender. Therefore, it is unclear whether the findings are representative of the global population of livestream offenders. Furthermore, there appears to be a gap in what the records show on platforms and payment services used and current digital trends. The lack of a legal definition and privacy considerations pose a challenge to investigation, detection, and prosecution. The available data allow some insights into a potentially much larger issue.


Assuntos
Abuso Sexual na Infância , Maus-Tratos Infantis , Criminosos , Criança , Humanos , Feminino , Masculino , Pandemias , Comportamento Sexual
14.
Sci Rep ; 14(1): 4634, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409365

RESUMO

The widespread use of devices like mobile phones and wearables allows for automatic monitoring of human daily activities, generating vast datasets that offer insights into long-term human behavior. A structured and controlled data collection process is essential to unlock the full potential of this information. While wearable sensors for physical activity monitoring have gained significant traction in healthcare, sports science, and fitness applications, securing diverse and comprehensive datasets for research and algorithm development poses a notable challenge. In this proof-of-concept study, we underscore the significance of semantic representation in enhancing data interoperability and facilitating advanced analytics for physical activity sensor observations. Our approach focuses on enhancing the usability of physical activity datasets by employing a medical-grade (CE certified) sensor to generate synthetic datasets. Additionally, we provide insights into ethical considerations related to synthetic datasets. The study conducts a comparative analysis between real and synthetic activity datasets, assessing their effectiveness in mitigating model bias and promoting fairness in predictive analysis. We have created an ontology for semantically representing observations from physical activity sensors and conducted predictive analysis on data collected using MOX2-5 activity sensors. Until now, there has been a lack of publicly available datasets for physical activity collected with MOX2-5 activity monitoring medical grade (CE certified) device. The MOX2-5 captures and transmits high-resolution data, including activity intensity, weight-bearing, sedentary, standing, low, moderate, and vigorous physical activity, as well as steps per minute. Our dataset consists of physical activity data collected from 16 adults (Male: 12; Female: 4) over a period of 30-45 days (approximately 1.5 months), yielding a relatively small volume of 539 records. To address this limitation, we employ various synthetic data generation methods, such as Gaussian Capula (GC), Conditional Tabular General Adversarial Network (CTGAN), and Tabular General Adversarial Network (TABGAN), to augment the dataset with synthetic data. For both the authentic and synthetic datasets, we have developed a Multilayer Perceptron (MLP) classification model for accurately classifying daily physical activity levels. The findings underscore the effectiveness of semantic ontology in semantic search, knowledge representation, data integration, reasoning, and capturing meaningful relationships between data. The analysis supports the hypothesis that the efficiency of predictive models improves as the volume of additional synthetic training data increases. Ontology and Generative AI hold the potential to expedite advancements in behavioral monitoring research. The data presented, encompassing both real MOX2-5 and its synthetic counterpart, serves as a valuable resource for developing robust methods in activity type classification. Furthermore, it opens avenues for exploration into research directions related to synthetic data, including model efficiency, detection of generated data, and considerations regarding data privacy.


Assuntos
Exercício Físico , Semântica , Adulto , Masculino , Humanos , Feminino , Redes Neurais de Computação , Algoritmos , Atividades Humanas
15.
PLoS One ; 19(5): e0304069, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38820304

RESUMO

Deep learning has achieved immense success in computer vision and has the potential to help physicians analyze visual content for disease and other abnormalities. However, the current state of deep learning is very much a black box, making medical professionals skeptical about integrating these methods into clinical practice. Several methods have been proposed to shed some light on these black boxes, but there is no consensus on the opinion of medical doctors that will consume these explanations. This paper presents a study asking medical professionals about their opinion of current state-of-the-art explainable artificial intelligence methods when applied to a gastrointestinal disease detection use case. We compare two different categories of explanation methods, intrinsic and extrinsic, and gauge their opinion of the current value of these explanations. The results indicate that intrinsic explanations are preferred and that physicians see value in the explanations. Based on the feedback collected in our study, future explanations of medical deep neural networks can be tailored to the needs and expectations of doctors. Hopefully, this will contribute to solving the issue of black box medical systems and lead to successful implementation of this powerful technology in the clinic.


Assuntos
Aprendizado Profundo , Médicos , Humanos , Médicos/psicologia , Inteligência Artificial , Redes Neurais de Computação , Pólipos do Colo/diagnóstico , Colonoscopia/métodos
16.
Sci Data ; 11(1): 553, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816403

RESUMO

Data analysis for athletic performance optimization and injury prevention is of tremendous interest to sports teams and the scientific community. However, sports data are often sparse and hard to obtain due to legal restrictions, unwillingness to share, and lack of personnel resources to be assigned to the tedious process of data curation. These constraints make it difficult to develop automated systems for analysis, which require large datasets for learning. We therefore present SoccerMon, the largest soccer athlete dataset available today containing both subjective and objective metrics, collected from two different elite women's soccer teams over two years. Our dataset contains 33,849 subjective reports and 10,075 objective reports, the latter including over six billion GPS position measurements. SoccerMon can not only play a valuable role in developing better analysis and prediction systems for soccer, but also inspire similar data collection activities in other domains which can benefit from subjective athlete reports, GPS position information, and/or time-series data in general.


Assuntos
Desempenho Atlético , Futebol , Humanos , Feminino , Sistemas de Informação Geográfica , Atletas
17.
Child Maltreat ; : 10775595241263017, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38889731

RESUMO

This proof-of- concept study focused on interviewers' behaviors and perceptions when interacting with a dynamic AI child avatar alleging abuse. Professionals (N = 68) took part in a virtual reality (VR) study in which they questioned an avatar presented as a child victim of sexual or physical abuse. Of interest was how interviewers questioned the avatar, how productive the child avatar was in response, and how interviewers perceived the VR interaction. Findings suggested alignment between interviewers' virtual questioning approaches and interviewers' typical questioning behavior in real-world investigative interviews, with a diverse range of questions used to elicit disclosures from the child avatar. The avatar responded to most question types as children typically do, though more nuanced programming of the avatar's productivity in response to complex question types is needed. Participants rated the avatar positively and felt comfortable with the VR experience. Results underscored the potential of AI-based interview training as a scalable, standardized alternative to traditional methods.

18.
Med Image Anal ; 99: 103307, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39303447

RESUMO

Automatic analysis of colonoscopy images has been an active field of research motivated by the importance of early detection of precancerous polyps. However, detecting polyps during the live examination can be challenging due to various factors such as variation of skills and experience among the endoscopists, lack of attentiveness, and fatigue leading to a high polyp miss-rate. Therefore, there is a need for an automated system that can flag missed polyps during the examination and improve patient care. Deep learning has emerged as a promising solution to this challenge as it can assist endoscopists in detecting and classifying overlooked polyps and abnormalities in real time, improving the accuracy of diagnosis and enhancing treatment. In addition to the algorithm's accuracy, transparency and interpretability are crucial to explaining the whys and hows of the algorithm's prediction. Further, conclusions based on incorrect decisions may be fatal, especially in medicine. Despite these pitfalls, most algorithms are developed in private data, closed source, or proprietary software, and methods lack reproducibility. Therefore, to promote the development of efficient and transparent methods, we have organized the "Medico automatic polyp segmentation (Medico 2020)" and "MedAI: Transparency in Medical Image Segmentation (MedAI 2021)" competitions. The Medico 2020 challenge received submissions from 17 teams, while the MedAI 2021 challenge also gathered submissions from another 17 distinct teams in the following year. We present a comprehensive summary and analyze each contribution, highlight the strength of the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic. Our analysis revealed that the participants improved dice coefficient metrics from 0.8607 in 2020 to 0.8993 in 2021 despite adding diverse and challenging frames (containing irregular, smaller, sessile, or flat polyps), which are frequently missed during a routine clinical examination. For the instrument segmentation task, the best team obtained a mean Intersection over union metric of 0.9364. For the transparency task, a multi-disciplinary team, including expert gastroenterologists, accessed each submission and evaluated the team based on open-source practices, failure case analysis, ablation studies, usability and understandability of evaluations to gain a deeper understanding of the models' credibility for clinical deployment. The best team obtained a final transparency score of 21 out of 25. Through the comprehensive analysis of the challenge, we not only highlight the advancements in polyp and surgical instrument segmentation but also encourage subjective evaluation for building more transparent and understandable AI-based colonoscopy systems. Moreover, we discuss the need for multi-center and out-of-distribution testing to address the current limitations of the methods to reduce the cancer burden and improve patient care.

19.
Sci Rep ; 14(1): 2032, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263232

RESUMO

Polyps are well-known cancer precursors identified by colonoscopy. However, variability in their size, appearance, and location makes the detection of polyps challenging. Moreover, colonoscopy surveillance and removal of polyps are highly operator-dependent procedures and occur in a highly complex organ topology. There exists a high missed detection rate and incomplete removal of colonic polyps. To assist in clinical procedures and reduce missed rates, automated methods for detecting and segmenting polyps using machine learning have been achieved in past years. However, the major drawback in most of these methods is their ability to generalise to out-of-sample unseen datasets from different centres, populations, modalities, and acquisition systems. To test this hypothesis rigorously, we, together with expert gastroenterologists, curated a multi-centre and multi-population dataset acquired from six different colonoscopy systems and challenged the computational expert teams to develop robust automated detection and segmentation methods in a crowd-sourcing Endoscopic computer vision challenge. This work put forward rigorous generalisability tests and assesses the usability of devised deep learning methods in dynamic and actual clinical colonoscopy procedures. We analyse the results of four top performing teams for the detection task and five top performing teams for the segmentation task. Our analyses demonstrate that the top-ranking teams concentrated mainly on accuracy over the real-time performance required for clinical applicability. We further dissect the devised methods and provide an experiment-based hypothesis that reveals the need for improved generalisability to tackle diversity present in multi-centre datasets and routine clinical procedures.


Assuntos
Crowdsourcing , Aprendizado Profundo , Pólipos , Humanos , Colonoscopia , Computadores
20.
Child Abuse Negl ; 143: 106324, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37390589

RESUMO

BACKGROUND: Child investigative interviewing is a complex skill requiring specialised training. A critical training element is practice. Simulations with digital avatars are cost-effective options for delivering training. This study of real-world data provides novel insights evaluating a large number of trainees' engagement with LiveSimulation (LiveSim), an online child-avatar that involves a trainee selecting a question (i.e., an option-tree) and the avatar responding with the level of detail appropriate for the question type. While LiveSim has been shown to facilitate learning of open-ended questions, its utility (from a user engagement perspective) remains to be examined. OBJECTIVE: We evaluated trainees' engagement with LiveSim, focusing on patterns of interaction (e.g., amount), appropriateness of the prompt structure, and the programme's technical compatibility. PARTICIPANTS AND SETTING: Professionals (N = 606, mainly child protection workers and police) being offered the avatar as part of an intensive course on how to interview a child conducted between 2009 and 2018. METHODS: For descriptive analysis, Visual Basic for Applications coding in Excel was applied to evaluate engagement and internal attributes of LiveSim. A compatibility study of the programme was run testing different hardware focusing on access and function. RESULTS: The trainees demonstrated good engagement with the programme across a variety of measures, including number and timing of activity completions. Overall, knowing the utility of avatars, our results provide strong support for the notion that a technically simple avatar like LiveSim awake user engagement. This is important knowledge in further development of learning simulations using next-generation technology.


Assuntos
Maus-Tratos Infantis , Humanos , Criança , Maus-Tratos Infantis/prevenção & controle , Aprendizagem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa