Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Exp Bot ; 69(4): 769-786, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-28992225

RESUMO

Leaf senescence is not a chaotic breakdown but a dynamic process following a precise timetable. It enables plants to economize with their resources and control their own viability and integrity. The onset as well as the progression of leaf senescence are co-ordinated by a complex genetic network that continuously integrates developmental and environmental signals such as biotic and abiotic stresses. Therefore, studying senescence requires an integrative and multi-scale analysis of the dynamic changes occurring in plant physiology and metabolism. In addition to providing an automated and standardized method to quantify leaf senescence at the macroscopic scale, we also propose an analytic framework to investigate senescence at physiological, biochemical, and molecular levels throughout the plant life cycle. We have developed protocols and suggested methods for studying different key processes involved in senescence, including photosynthetic capacities, membrane degradation, redox status, and genetic regulation. All methods presented in this review were conducted on Arabidopsis thaliana Columbia-0 and results are compared with senescence-related mutants. This guideline includes experimental design, protocols, recommendations, and the automated tools for leaf senescence analyses that could also be applied to other species.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Folhas de Planta/crescimento & desenvolvimento , Envelhecimento , Arabidopsis/metabolismo , Folhas de Planta/metabolismo
2.
J Integr Plant Biol ; 54(8): 540-54, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22805117

RESUMO

In order to analyze the signaling function of hydrogen peroxide (H(2)O(2)) production in senescence in more detail, we manipulated intracellular H(2)O(2) levels in Arabidopsis thaliala (L.) Heynh by using the hydrogen-peroxide-sensitive part of the Escherichia coli transcription regulator OxyR, which was directed to the cytoplasm as well as into the peroxisomes. H(2)O(2) levels were lowered and senescence was delayed in both transgenic lines, but OxyR was found to be more effective in the cytoplasm. To transfer this knowledge to crop plants, we analyzed oilseed rape plants Brassica napus L. cv. Mozart for H(2)O(2) and its scavenging enzymes catalase (CAT) and ascorbate peroxidase (APX) during leaf and plant development. H(2)O(2) levels were found to increase during bolting and flowering time, but no increase could be observed in the very late stages of senescence. With increasing H(2)O(2) levels, CAT and APX activities declined, so it is likely that similar mechanisms are used in oilseed rape and Arabidopsis to control H(2)O(2) levels. Under elevated CO(2) conditions, oilseed rape senescence was accelerated and coincided with an earlier increase in H(2)O(2) levels, indicating that H(2)O(2) may be one of the signals to inducing senescence in a broader range of Brassicaceae.


Assuntos
Arabidopsis/fisiologia , Brassica napus/fisiologia , Peróxido de Hidrogênio/metabolismo , Proteínas de Arabidopsis/genética , Ascorbato Peroxidases/metabolismo , Catalase/metabolismo , Proteínas de Escherichia coli/genética , Genes de Plantas , Proteínas Repressoras/genética , Fatores de Transcrição/genética
3.
Genes (Basel) ; 10(2)2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30696119

RESUMO

Leaf senescence is highly regulated by transcriptional reprogramming, implying an important role for transcriptional regulators. ETHYLENE RESPONSE FACTOR4 (ERF4) was shown to be involved in senescence regulation and to exist in two different isoforms due to alternative polyadenylation of its pre-mRNA. One of these isoforms, ERF4-R, contains an ERF-associated amphiphilic repression (EAR) motif and acts as repressor, whereas the other form, ERF4-A, is lacking this motif and acts as activator. Here, we analyzed the impact of these isoforms on senescence. Both isoforms were able to complement the delayed senescence phenotype of the erf4 mutant with a tendency of ERF4-A for a slightly better complementation. However, overexpression led to accelerated senescence of 35S:ERF4-R plants but not of 35S:ERF4-A plants. We identified CATALASE3 (CAT3) as direct target gene of ERF4 in a yeast-one-hybrid screen. Both isoforms directly bind to the CAT3 promoter but have antagonistic effects on gene expression. The ratio of ERF4-A to ERF4-R mRNA changed during development, leading to a complex age-dependent regulation of CAT3 activity. The RNA-binding protein FPA shifted the R/A-ratio and fpa mutants are pointing towards a role of alternative polyadenylation regulators in senescence.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica no Desenvolvimento , Poliadenilação , Proteínas Repressoras/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Catalase/genética , Catalase/metabolismo , Regulação da Expressão Gênica de Plantas , Regiões Promotoras Genéticas , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Repressoras/metabolismo
4.
Genes (Basel) ; 10(2)2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30678241

RESUMO

In general, yield and fruit quality strongly rely on efficient nutrient remobilization during plant development and senescence. Transcriptome changes associated with senescence in spring oilseed rape grown under optimal nitrogen supply or mild nitrogen deficiency revealed differences in senescence and nutrient mobilization in old lower canopy leaves and younger higher canopy leaves [1]. Having a closer look at this transcriptome analyses, we identified the major classes of seed storage proteins (SSP) to be expressed in vegetative tissue, namely leaf and stem tissue. Expression of SSPs was not only dependent on the nitrogen supply but transcripts appeared to correlate with intracellular H2O2 contents, which functions as well-known signaling molecule in developmental senescence. The abundance of SSPs in leaf material transiently progressed from the oldest leaves to the youngest. Moreover, stems also exhibited short-term production of SSPs, which hints at an interim storage function. In order to decipher whether hydrogen peroxide also functions as a signaling molecule in nitrogen deficiency-induced senescence, we analyzed hydrogen peroxide contents after complete nitrogen depletion in oilseed rape and Arabidopsis plants. In both cases, hydrogen peroxide contents were lower in nitrogen deficient plants, indicating that at least parts of the developmental senescence program appear to be suppressed under nitrogen deficiency.


Assuntos
Brassica rapa/genética , Nitrogênio/metabolismo , Folhas de Planta/metabolismo , Proteínas de Armazenamento de Sementes/genética , Brassica rapa/crescimento & desenvolvimento , Brassica rapa/metabolismo , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Nitrogênio/deficiência , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Armazenamento de Sementes/metabolismo
5.
Front Plant Sci ; 10: 1734, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32038695

RESUMO

Senescence is the last developmental step in plant life and is accompanied by a massive change in gene expression implying a strong participation of transcriptional regulators. In the past decade, the WRKY53 transcription factor was disclosed to be a central node of a complex regulatory network of leaf senescence and to underlie a tight multi-layer control of expression, activity and protein stability. Here, we identify WRKY25 as a redox-sensitive up-stream regulatory factor of WRKY53 expression. Under non-oxidizing conditions, WRKY25 binds to a specific W-box in the WRKY53 promoter and acts as a positive regulator of WRKY53 expression in a transient expression system using Arabidopsis protoplasts, whereas oxidizing conditions dampened the action of WRKY25. However, overexpression of WRKY25 did not accelerate senescence but increased lifespan of Arabidopsis plants, whereas the knock-out of the gene resulted in the opposite phenotype, indicating a more complex regulatory function of WRKY25 within the WRKY subnetwork of senescence regulation. In addition, overexpression of WRKY25 mediated higher tolerance to oxidative stress and the intracellular H2O2 level is lower in WRKY25 overexpressing plants and higher in wrky25 mutants compared to wildtype plants suggesting that WRKY25 is also involved in controlling intracellular redox conditions. Consistently, WRKY25 overexpressers had higher and wrky mutants lower H2O2 scavenging capacity. Like already shown for WRKY53, MEKK1 positively influenced the activation potential of WRKY25 on the WRKY53 promoter. Taken together, WRKY53, WRKY25, MEKK1 and H2O2 interplay with each other in a complex network. As H2O2 signaling molecule participates in many stress responses, WRKK25 acts most likely as integrators of environmental signals into senescence regulation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa