Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Pharm ; 18(7): 2703-2713, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34151575

RESUMO

The discovery of new small-molecule drugs for intravitreal administration would benefit from simple models to predict vitreal clearance (CL). The current models available have limitations in their applicability to small-molecule drugs and translatability to humans. We developed a mechanistic model combining the diffusion rate of the molecule in the vitreous and permeability across posterior segment tissues and applied it to 30 small molecules with observed CL available mostly from literature. We used Caco-2 permeability as a surrogate for ocular tissue permeability. The model predicted rabbit vitreal CL well, with 80% of the predictions being within a 2-fold range of the observed CL. For an accurate prediction, it was crucial to consider the anterior diffusion CL from the vitreous to the aqueous and a limiting diffusion CL for the whole eye. We observed no major differences in model accuracy when using literature permeability values from retinal pigment epithelial cell models. Importantly, by adopting the specific dimensions of the human eye, the model was able to accurately predict vitreal CL of four compounds for which human vitreal CL data are available. In summary, this mechanistic model enables a simple, accurate, and translatable estimation of small-molecule vitreal CL.


Assuntos
Permeabilidade da Membrana Celular , Modelos Biológicos , Preparações Farmacêuticas/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Corpo Vítreo/metabolismo , Animais , Células CACO-2 , Difusão , Humanos , Cinética , Coelhos
2.
Mol Pharm ; 15(6): 2174-2179, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29648838

RESUMO

Pharmacokinetics in the posterior eye segment has therapeutic implications due to the importance of retinal diseases in ophthalmology. In principle, drug binding to the components of the vitreous, such as proteins, collagen, or glycosaminoglycans, could prolong ocular drug retention and modify levels of pharmacologically active free drug in the posterior eye segment. Since drug binding in the vitreous has been investigated only sparsely, we studied vitreal drug binding of 35 clinical small molecule drugs. Isolated homogenized porcine vitreous and the drugs were placed in a two-compartment dialysis system that was used to separate the bound and unbound drug. Free drug concentrations and binding percentages were quantitated using LC-MS/MS. Drug binding levels varied between 21 and 74% in the fresh vitreous and 0 and 64% in the frozen vitreous. The vitreal binding percentages did not correlate with those in plasma. Our data-based pharmacokinetic simulations suggest that vitreal binding of small molecule drugs has only a modest influence on the AUC of free drug or drug half-life in the vitreous. Therefore, it is likely that vitreal binding is not a major reason for interindividual variability in ocular drug responses or drug-drug interactions.


Assuntos
Farmacocinética , Corpo Vítreo/metabolismo , Administração Oftálmica , Animais , Cromatografia Líquida de Alta Pressão , Modelos Animais , Doenças Retinianas/tratamento farmacológico , Suínos , Espectrometria de Massas em Tandem
3.
Mol Pharm ; 13(4): 1251-7, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26820602

RESUMO

Melanin has a high binding affinity for a wide range of drugs. The determination of the melanin binding capacity and its binding affinity are important, e.g., in the determination of the ocular drug distribution, the prediction of drug effects in the eye, and the trans-scleral drug delivery. The binding parameters estimated from a given data set vary significantly when using different isotherms or different nonlinear fitting methods. In this work, the commonly used bi-Langmuir isotherm, which assumes two classes of independent sites, is confronted with the Sips isotherm. Direct, log-log, and Scatchard plots are used, and the interpretation of the binding curves in the latter is critically analyzed. In addition to the goodness of fit, the emphasis is placed on the physical meaning of the binding parameters. The bi-Langmuir model imposes a bimodal distribution of binding energies for the sites on the melanin granules, but the actual distribution is most likely continuous and unimodal, as assumed by the Sips isotherm. Hence, the latter describes more accurately the distribution of binding energies and also the experimental results of melanin binding to drugs and metal ions. Simulations are used to show that the existence of two classes of sites cannot be confirmed on the sole basis of the shape of the binding curve in the Scatchard plot, and that serious doubts may appear on the meaning of the binding parameters of the bi-Langmuir model. Experimental results of melanin binding to chloroquine and metoprolol are used to illustrate the importance of the choice of the binding isotherm and of the method used to evaluate the binding parameters.


Assuntos
Melaninas/química , Modelos Teóricos , Cloroquina/química , Cinética , Metoprolol/química
4.
Mol Pharm ; 13(9): 2977-86, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-26741026

RESUMO

Melanin binding is known to affect the distribution and elimination of ocular drugs. The purpose of this study was to evaluate if the extent of drug uptake to primary retinal pigment epithelial (RPE) cells could be estimated based on in vitro binding studies with isolated melanin and evaluate the suitability of single photon emission computed tomography/computed tomography (SPECT/CT) in studying pigment binding in vivo with pigmented and albino rats. Binding of five compounds, basic molecules timolol, chloroquine, and nadolol and acidic molecules methotrexate and 5(6)-carboxy-2',7'-dichlorofluorescein (CDCF), was studied using isolated melanin from porcine choroid-RPE at pH 5.0 and 7.4. The uptake to primary porcine RPE cells was studied with timolol, chloroquine, methotrexate, and CDCF. The cell study setting was modeled using parameters from the in vitro binding study. In vivo kinetics of 3-[I-123]-iodochloroquine was studied by the SPECT/CT method in albino and pigmented rats. All basic compounds bound to melanin at both pH values, whereas the acidic compounds bound more at pH 5.0 than at pH 7.4. The basic compounds (chloroquine, timolol) showed significant cellular uptake, unlike the acidic compounds (methotrexate, CDCF). On the basis of the modeling, melanin binding was a major factor governing the overall drug distribution to the RPE cells. Likewise, melanin binding explained distribution of 3-[I-123]-iodochloroquine in the pigmented RPE, whereas drug accumulation was not seen in the albino rat. This study demonstrates the suitability of noninvasive SPECT/CT imaging in monitoring ocular melanin binding in vivo. These studies are a useful step toward understanding the pharmacokinetic impact of melanin binding.


Assuntos
Melaninas/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único/métodos , Animais , Células Cultivadas , Cloroquina/metabolismo , Olho/metabolismo , Concentração de Íons de Hidrogênio , Radioisótopos do Iodo , Cinética , Metotrexato/metabolismo , Nadolol/metabolismo , Ligação Proteica , Ratos , Suínos , Timolol/metabolismo
5.
Transl Vis Sci Technol ; 11(5): 18, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35579886

RESUMO

Purpose: Inflammation is implicated in the etiology of diverse retinopathies including uveitis, age-related macular degeneration or diabetic retinopathy. Tumor necrosis factor alpha (TNF-α) is a well-known proinflammatory cytokine that is described as a biomarker for inflammation in diverse retinopathies and therefore emerged as an interesting target to treat inflammation in the eye by neutralizing anti-TNF-α antibodies. Methods: Recently, we have demonstrated that Adeno-associated virus (AAV)-mediated expression of human TNF-α in the murine eye induces retinal inflammation including vasculitis and fibrosis, thereby mimicking human disease-relevant pathologies. In a proof-of-mechanism study, we now tested whether AAV-TNF-α induced pathologies can be reversed by neutralizing TNF-α antibody treatment. Results: Strikingly, a single intravitreal injection of the TNF-α antibody golimumab reduced AAV-TNF-α-induced retinal inflammation and retinal thickening. Furthermore, AAV-TNF-α-mediated impaired retinal function was partially rescued by golimumab as revealed by electroretinography recordings. Finally, to study TNF-α-induced vasculitis in human in vitro cell culture assays, we established a monocyte-to-endothelium adhesion co-culture system. Indeed, also in vitro TNF-α induced monocyte adhesion to human retinal endothelial cells, which was prevented by golimumab. Conclusions: Overall, our study describes valuable in vitro and in vivo approaches to study the function of TNF-α in retinal inflammation and demonstrated a preclinical proof-of-mechanism treatment with golimumab. Translational Relevance: The AAV-based model expressing human TNF-α allows us to investigate TNF-α-driven pathologies supporting research in mechanisms of retinal inflammation.


Assuntos
Doenças Retinianas , Fator de Necrose Tumoral alfa , Vasculite , Animais , Dependovirus/genética , Células Endoteliais/patologia , Humanos , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Doenças Retinianas/etiologia , Doenças Retinianas/metabolismo , Doenças Retinianas/patologia , Inibidores do Fator de Necrose Tumoral/farmacologia , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Vasculite/etiologia , Vasculite/patologia
6.
Pharmaceutics ; 12(6)2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560065

RESUMO

Interactions between drugs and melanin pigment may have major impacts on pharmacokinetics. Therefore, melanin binding can modify the efficacy and toxicity of medications in ophthalmic and other disease of pigmented tissues, such as melanoma. As melanin is present in many pigmented tissues in the human body, investigation of pigment binding is relevant in drug discovery and development. Conventionally, melanin binding assays have been performed using an equilibrium binding study followed by chemical analytics, such as LC/MS. This approach is laborious, relatively slow, and limited to facilities with high performance quantitation instrumentation. We present here a screening of melanin binding with label-free microscale thermophoresis (MST) that utilizes the natural autofluorescence of melanin. We determined equilibrium dissociation constants (Kd) of 11 model compounds with melanin nanoparticles. MST categorized the compounds into extreme (chloroquine, penicillin G), high (papaverine, levofloxacin, terazosin), intermediate (timolol, nadolol, quinidine, propranolol), and low melanin binders (atropine, methotrexate, diclofenac) and displayed good correlation with binding parameter values obtained with the conventional binding study and LC/MS analytics. Further, correlation was seen between predicted melanin binding in human retinal pigment epithelium and choroid (RPE-choroid) and Kd values obtained with MST. This method represents a useful and fast approach for classification of compounds regarding melanin binding. Thus, the method can be utilized in various fields, including drug discovery, pharmacokinetics, and toxicology.

7.
Pharmaceutics ; 12(12)2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33276439

RESUMO

The rat is a commonly used species in ocular drug research. Detailed methods of separating rat ocular tissues have not been described in literature. To understand the intraocular drug distribution, we developed a robust method for the separation of individual anterior and posterior substructures of pigmented Brown Norway (BN) and albino Wistar Han (WH) rat eyes, followed by quantification of drug concentration in these substructures. A short formalin incubation, which did not interfere with drug quantification, enabled the preservation of individual tissue sections while minimizing cross-tissue contamination, as demonstrated by histological analysis. Following oral administration, we applied the tissue separation method, in order to determine the ocular concentrations of dexamethasone and levofloxacin, as well as two in-house molecules BI 113823 and BI 1026706, compounds differing in their melanin binding. The inter-individual variability in tissue partitioning coefficients (Kp) was low, demonstrating the reproducibility of the separation method. Kp values of individual tissues varied up to 100-fold in WH and up to 46,000-fold in BN rats highlighting the importance of measuring concentration directly from the ocular tissue of interest. Additionally, clear differences were observed in the BN rat tissue partitioning compared to the WH rat. Overall, the developed method enables a reliable determination of small molecule drug concentrations in ocular tissues to support ocular drug research and development.

8.
J Control Release ; 283: 261-268, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-29859954

RESUMO

Melanin binding affects drug distribution and retention in pigmented ocular tissues, thereby affecting drug response, duration of activity and toxicity. Therefore, it is a promising possibility for drug targeting and controlled release in the pigmented cells and tissues. Intracellular unbound drug concentrations determine pharmacological and toxicological actions, but analyses of unbound vs. total drug concentrations in pigmented cells are lacking. We studied intracellular binding and cellular drug uptake in pigmented retinal pigment epithelial cells and in non-pigmented ARPE-19 cells with five model drugs (chloroquine, propranolol, timolol, diclofenac, methotrexate). The unbound drug fractions in pigmented cells were 0.00016-0.73 and in non-pigmented cells 0.017-1.0. Cellular uptake (i.e. distribution ratio Kp), ranged from 1.3 to 6300 in pigmented cells and from 1.0 to 25 in non-pigmented cells. Values for intracellular bioavailability, Fic, were similar in both cells types (although larger variation in pigmented cells). In vitro melanin binding parameters were used to predict intracellular unbound drug fraction and cell uptake. Comparison of predictions with experimental data indicates that other factors (e.g. ion-trapping, lipophilicity-related binding to other cell components) also play a role. Melanin binding is a major factor that leads to cellular uptake and unbound drug fractions of a range of 3-4 orders of magnitude indicating that large reservoirs of melanin bound drug can be generated in the cells. Understanding melanin binding has important implications on retinal drug targeting, efficacy and toxicity.


Assuntos
Células Epiteliais/metabolismo , Melaninas/metabolismo , Terapia de Alvo Molecular , Epitélio Pigmentado da Retina/citologia , Animais , Transporte Biológico , Linhagem Celular , Cloroquina/farmacologia , Diclofenaco/farmacologia , Humanos , Metotrexato/farmacologia , Propranolol/farmacologia , Suínos , Timolol/farmacologia
9.
Pharmaceutics ; 11(1)2018 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-30598037

RESUMO

Biologicals are important ocular drugs that are be delivered using monthly and bimonthly intravitreal injections to treat retinal diseases, such as age-related macular degeneration. Long acting delivery systems are needed for prolongation of their dosing interval. Intravitreal biologicals are eliminated from the eye via the aqueous humor outflow. Thus, the anterior and posterior segments are exposed to the drug. We utilized a kinetic simulation model to estimate protein drug concentrations in the vitreous and aqueous humor after bolus injection and controlled release administration to the vitreous. The simulations predicted accurately the experimental levels of 5 biologicals in the vitreous and aqueous humor. The good match between the simulations and experimental data demonstrated almost complete anterior segment bioavailability, and major dose sparing with ocular controlled release systems. Overall, the model is a useful tool in the design of intraocular delivery of biologicals.

10.
Adv Drug Deliv Rev ; 126: 23-43, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29247767

RESUMO

Pigmented ocular tissues contain melanin within the intracellular melanosomes. Drugs bind to melanin at varying extent that ranges from no binding to extensive binding. Binding may lead to drug accumulation to the pigmented tissues and prolonged drug retention in the melanin containing cells. Therefore, melanin binding is an important feature that affects ocular drug delivery and biodistribution, but this topic has not been reviewed since 1998. In this review, we present current knowledge on ocular melanin, melanosomes and binding of drugs to pigmented cells and tissues. In vitro, in vivo and in silico methods in the field were critically evaluated, because the literature in this field can be confusing if the reader does not properly understand the methodological aspects. Literature analysis includes a comprehensive table of literature data on melanin binding of drugs. Furthermore, we aimed to give some insights beyond the current literature by making a chemical structure based classification model for melanin binding of drugs and kinetic simulations that revealed significant interplay between melanin binding and drug permeability across the melanosomal and plasma membranes. Overall, more mechanistic and systematic research is needed before the impact of melanin binding on ocular drug delivery can be properly understood and predicted.


Assuntos
Sistemas de Liberação de Medicamentos , Oftalmopatias/tratamento farmacológico , Oftalmopatias/metabolismo , Melaninas/química , Animais , Sítios de Ligação , Humanos
11.
Prog Retin Eye Res ; 57: 134-185, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28028001

RESUMO

Drug delivery to the posterior eye segment is an important challenge in ophthalmology, because many diseases affect the retina and choroid leading to impaired vision or blindness. Currently, intravitreal injections are the method of choice to administer drugs to the retina, but this approach is applicable only in selected cases (e.g. anti-VEGF antibodies and soluble receptors). There are two basic approaches that can be adopted to improve retinal drug delivery: prolonged and/or retina targeted delivery of intravitreal drugs and use of other routes of drug administration, such as periocular, suprachoroidal, sub-retinal, systemic, or topical. Properties of the administration route, drug and delivery system determine the efficacy and safety of these approaches. Pharmacokinetic and pharmacodynamic factors determine the required dosing rates and doses that are needed for drug action. In addition, tolerability factors limit the use of many materials in ocular drug delivery. This review article provides a critical discussion of retinal drug delivery, particularly from the pharmacokinetic point of view. This article does not include an extensive review of drug delivery technologies, because they have already been reviewed several times recently. Instead, we aim to provide a systematic and quantitative view on the pharmacokinetic factors in drug delivery to the posterior eye segment. This review is based on the literature and unpublished data from the authors' laboratory.


Assuntos
Inibidores da Angiogênese/administração & dosagem , Inibidores da Angiogênese/farmacocinética , Retina/metabolismo , Doenças Retinianas/tratamento farmacológico , Animais , Sistemas de Liberação de Medicamentos , Humanos , Injeções Intravítreas , Doenças Retinianas/metabolismo , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa