Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ther ; 31(9): 2767-2782, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37481701

RESUMO

The AAV9 gene therapy vector presented in this study is safe in mice and non-human primates and highly efficacious without causing overexpression toxicity, a major challenge for clinical translation of Rett syndrome gene therapy vectors to date. Our team designed a new truncated methyl-CpG-binding protein 2 (MECP2) promoter allowing widespread expression of MECP2 in mice and non-human primates after a single injection into the cerebrospinal fluid without causing overexpression symptoms up to 18 months after injection. Additionally, this new vector is highly efficacious at lower doses compared with previous constructs as demonstrated in extensive efficacy studies performed by two independent laboratories in two different Rett syndrome mouse models carrying either a knockout or one of the most frequent human mutations of Mecp2. Overall, data from this multicenter study highlight the efficacy and safety of this gene therapy construct, making it a promising candidate for first-in-human studies to treat Rett syndrome.


Assuntos
Síndrome de Rett , Humanos , Camundongos , Animais , Síndrome de Rett/genética , Síndrome de Rett/terapia , Síndrome de Rett/metabolismo , Primatas/genética , Terapia Genética , Mutação
2.
Nanomedicine ; 46: 102611, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36228995

RESUMO

Nanoscale echogenic bubbles (NBs), can be used as a theranostic platform for the localized delivery of encapsulated drugs. However, the generation of NBs is challenging, because they have lifetimes as short as milliseconds in solution. The aim of this work has been the optimization of a preparation method for the generation of stable NBs, characterized by measuring: a) acoustic efficiency, b) nano-size, to ensure passive tumour targeting, c) stability during storage and after injection and d) ability to entrap drugs. NBs are monodisperse and ultra-stable, their stability achieved by generation of an amphiphilic multilamellar shell able to efficiently retain the PFC gas. The NBs perform as good acoustic enhancers over a wide frequency range and out of resonant conditions, as tested in both in vitro and in vivo experiments, proving to be a potential platform for the production of versatile carriers to be used in ultrasound-assisted diagnostic, therapeutic and theranostic applications.


Assuntos
Acústica , Microbolhas , Ultrassonografia/métodos , Meios de Contraste
3.
Br J Haematol ; 195(3): 399-404, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34318932

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is an aggressive, heterogeneous neoplasm where prognostication and therapeutic decision are challenging. The available prognostic tools are not able to identify all patients refractory to treatment. MicroRNAs, small RNAs frequently deregulated in cancer, stably circulate in biofluids, representing interesting candidates for non-invasive biomarkers. Here we validated serum miR-22, an evolutionarily conserved microRNA, as a prognostic/predictive biomarker in DLBCL. Moreover, we found that its expression and release from DLBCL cells are related to therapy response and adversely affect cell proliferation. These results suggest that miR-22 is a promising complementary or even independent non-invasive biomarker for DLBCL management.


Assuntos
Linfoma Difuso de Grandes Células B/sangue , MicroRNAs/sangue , RNA Neoplásico/sangue , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/sangue , Divisão Celular/genética , Ciclofosfamida/administração & dosagem , Doxorrubicina/administração & dosagem , Exossomos/química , Genes bcl-2 , Genes myc , Humanos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/mortalidade , Anotação de Sequência Molecular , Prednisona/administração & dosagem , Prognóstico , Estudos Prospectivos , Proteínas Proto-Oncogênicas c-bcl-6/genética , Rituximab/administração & dosagem , Vincristina/administração & dosagem
4.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638940

RESUMO

Several phytochemical-containing herbal extracts are increasingly marketed as health-promoting products. In particular, chamomile (Matricaria recutita L.) is well known for its anti-inflammatory, analgesic, and antitumor properties. Here, we evaluated differences in chemical composition among six commercially available products and their potential impact on biological activity in human immortalized colonocytes. Our investigation encompassed: (i) preparation of dry extracts and yield evaluation; (ii) qualitative and quantitative analysis of phenol content; (iii) modulation of redox state; and (iv) bioavailability of main bioactive compounds. We demonstrated that apparently identical products showed huge heterogeneity, in terms of yield extraction, chemical composition, and antioxidant effects. All samples contained high amounts of flavonoids and cinnamic acid derivatives, but differentially concentrated in the six extracts. Depending on polyphenol content, chamomile samples possessed variable antioxidant potential, in terms of decreased radical generation and increased reduced glutathione levels. The observed effects might be ascribed to flavones (apigenin, luteolin, and their glycones) highly represented in the six extracts. Nonetheless, chamomile extracts exerted cytotoxic effects at high concentrations, suggesting that a herbal medicine is not always safe. In conclusion, due to the complexity and variability of plant matrices, studies evaluating effectiveness of chamomile should always be accompanied by preliminary characterization of phytochemical composition.


Assuntos
Antioxidantes/química , Camomila/química , Matricaria/química , Compostos Fitoquímicos/química , Extratos Vegetais/química , Plantas Medicinais/química , Polifenóis/análise , Antioxidantes/farmacologia , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Cinamatos/análise , Flavonas/análise , Flavonoides/análise , Humanos , Oxirredução/efeitos dos fármacos , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
5.
Molecules ; 26(11)2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198955

RESUMO

Hyaluronic acid (HA) is one of the most used biopolymers in the development of drug delivery systems, due to its biocompatibility, biodegradability, non-immunogenicity and intrinsic-targeting properties. HA specifically binds to CD44; this property combined to the EPR effect could provide an option for reinforced active tumor targeting by nanocarriers, improving drug uptake by the cancer cells via the HA-CD44 receptor-mediated endocytosis pathway. Moreover, HA can be easily chemically modified to tailor its physico-chemical properties in view of specific applications. The derivatization with cholesterol confers to HA an amphiphilic character, and then the ability of anchoring to niosomes. HA-Chol was then used to coat Span® or Tween® niosomes providing them with an intrinsic targeting shell. The nanocarrier physico-chemical properties were analyzed in terms of hydrodynamic diameter, ζ-potential, and bilayer structural features to evaluate the difference between naked and HA-coated niosomes. Niosomes stability was evaluated over time and in bovine serum. Moreover, interaction properties of HA-coated nanovesicles with model membranes, namely liposomes, were studied, to obtain insights on their interaction behavior with biological membranes in future experiments. The obtained coated systems showed good chemical physical features and represent a good opportunity to carry out active targeting strategies.


Assuntos
Materiais Biomiméticos/química , Colesterol/química , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/farmacologia , Animais , Bovinos , Membrana Celular , Sistemas de Liberação de Medicamentos , Estabilidade de Medicamentos , Ácido Hialurônico/síntese química , Ácido Hialurônico/química , Lipossomos , Nanoestruturas , Tamanho da Partícula , Soro/química
6.
J Cell Mol Med ; 24(5): 3053-3063, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32022398

RESUMO

S100B protein bridges chronic mucosal inflammation and colorectal cancer given its ability to activate NF-kappaB transcription via RAGE signalling and sequestrate pro-apoptotic wtp53. Being an S100B inhibitor, pentamidine antagonizes S100B-wtp53 interaction, restoring wtp53-mediated pro-apoptotic control in cancer cells in several types of tumours. The expression of S100B, pro-inflammatory molecules and wtp53 protein was evaluated in human biopsies deriving from controls, ulcerative colitis and colon cancer patients at baseline (a) and (b) following S100B targeting with niosomal PENtamidine VEhiculation (PENVE), to maximize drug permeabilization in the tissue. Cultured biopsies underwent immunoblot, EMSA, ELISA and biochemical assays for S100B and related pro-inflammatory/pro-apoptotic proteins. Exogenous S100B (0.005-5 µmol/L) alone, or in the presence of PENVE (0.005-5 µmol/L), was tested in control biopsies while PENVE (5 µmol/L) was evaluated on control, peritumoral, ulcerative colitis and colon cancer biopsies. Our data show that S100B level progressively increases in control, peritumoral, ulcerative colitis and colon cancer enabling a pro-inflammatory/angiogenic and antiapoptotic environment, featured by iNOS, VEGF and IL-6 up-regulation and wtp53 and Bax inhibition. PENVE inhibited S100B activity, reducing its capability to activate RAGE/phosphor-p38 MAPK/NF-kappaB and favouring its disengagement with wtp53. PENVE blocks S100B activity and rescues wtp53 expression determining pro-apoptotic control in colon cancer, suggesting pentamidine as a potential anticancer drug.


Assuntos
Carcinoma/tratamento farmacológico , Neoplasias do Colo/tratamento farmacológico , Pentamidina/administração & dosagem , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Proteína Supressora de Tumor p53/genética , Antígenos de Neoplasias/genética , Biópsia , Carcinoma/genética , Carcinoma/patologia , Colo/efeitos dos fármacos , Colo/metabolismo , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Feminino , Humanos , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/patologia , Lipossomos/administração & dosagem , Masculino , Pessoa de Meia-Idade , Proteínas Quinases Ativadas por Mitógeno/genética , Mucosa/efeitos dos fármacos , NF-kappa B/genética , Microambiente Tumoral/efeitos dos fármacos
7.
Mol Ther ; 27(10): 1836-1847, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31331814

RESUMO

CLN6-Batten disease, a form of neuronal ceroid lipofuscinosis is a rare lysosomal storage disorder presenting with gradual declines in motor, visual, and cognitive abilities and early death by 12-15 years of age. We developed a self-complementary adeno-associated virus serotype 9 (scAAV9) vector expressing the human CLN6 gene under the control of a chicken ß-actin (CB) hybrid promoter. Intrathecal delivery of scAAV9.CB.hCLN6 into the cerebrospinal fluid (CSF) of the lumbar spinal cord of 4-year-old non-human primates was safe, well tolerated, and led to efficient targeting throughout the brain and spinal cord. A single intracerebroventricular (i.c.v.) injection at post-natal day 1 in Cln6 mutant mice delivered scAAV9.CB.CLN6 directly into the CSF, and it prevented or drastically reduced all of the pathological hallmarks of Batten disease. Moreover, there were significant improvements in motor performance, learning and memory deficits, and survival in treated Cln6 mutant mice, extending survival from 15 months of age (untreated) to beyond 21 months of age (treated). Additionally, many parameters were similar to wild-type counterparts throughout the lifespan of the treated mice.


Assuntos
Dependovirus/genética , Terapia Genética/métodos , Proteínas de Membrana/genética , Lipofuscinoses Ceroides Neuronais/psicologia , Lipofuscinoses Ceroides Neuronais/terapia , Actinas/genética , Animais , Vetores Genéticos/administração & dosagem , Vetores Genéticos/efeitos adversos , Humanos , Infusões Intraventriculares , Injeções Espinhais , Aprendizagem/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Camundongos , Atividade Motora/efeitos dos fármacos , Mutação , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/metabolismo , Primatas , Regiões Promotoras Genéticas , Resultado do Tratamento
8.
Neurobiol Dis ; 129: 56-66, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31085228

RESUMO

Non-neuronal cell types such as astrocytes can contribute to Parkinson's disease (PD) pathology. The G2019S mutation in leucine-rich repeat kinase 2 (LRRK2) is one of the most common known causes of familial PD. To characterize its effect on astrocytes, we developed a protocol to produce midbrain-patterned astrocytes from human induced pluripotent stem cells (iPSCs) derived from PD LRRK2 G2019S patients and healthy controls. RNA sequencing analysis revealed the downregulation of genes involved in the extracellular matrix in PD cases. In particular, transforming growth factor beta 1 (TGFB1), which has been shown to inhibit microglial inflammatory response in a rat model of PD, and matrix metallopeptidase 2 (MMP2), which has been shown to degrade α-synuclein aggregates, were found to be down-regulated in LRRK2 G2019S astrocytes. Our findings suggest that midbrain astrocytes carrying the LRRK2 G2019S mutation may have reduced neuroprotective capacity and may contribute to the development of PD pathology.


Assuntos
Astrócitos/metabolismo , Metaloproteinase 2 da Matriz/biossíntese , Doença de Parkinson/metabolismo , Fator de Crescimento Transformador beta1/biossíntese , Idoso , Regulação para Baixo , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Masculino , Pessoa de Meia-Idade , Mutação , Doença de Parkinson/genética , Análise de Sequência de RNA
9.
Microb Pathog ; 126: 323-331, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30458252

RESUMO

Many essential oils (EOs) are screened as potential sources of antimicrobial compounds. EOs from the genus Satureja have recognized biological properties, including analgesic, anti-inflammatory, immunomodulatory, anticancer, and antimicrobial activity. This study aimed to obtain a metabolite profile of commercial essential oil of S. montana L. (SEO) and to evaluate its antimicrobial properties, both alone and combined with gentamicin towards Gram-negative and Gram-positive bacterial strains. Untargeted analyses based on direct infusion Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and on GC-MS have provided a high metabolome coverage, allowing to identify carvacrol, cymene and thymol as the major components of commercial SEO. SEO exerted an antimicrobial activity and induced a synergistic interaction with gentamicin against both reference and clinical bacterial strains. A significant reduction of Escherichia coli, Staphylococcus aureus and Listeria monocytogenes biofilm formation was induced by SEO. As a result of SEO treatment, clear morphological bacterial alterations were visualized by scanning electron microscopy: L. monocytogenes and S. aureus showed malformed cell surface or broken cells with pores formation, whereas E. coli displayed collapsed cell surface. These results encourage further studies about bactericidal and antibiotic synergistic effect of SEO for combined therapy in clinical setting as well as in agricultural systems.


Assuntos
Anti-Infecciosos/farmacologia , Gentamicinas/farmacologia , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Óleos de Plantas/farmacologia , Satureja/química , Biofilmes/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cimenos , Combinação de Medicamentos , Sinergismo Farmacológico , Cromatografia Gasosa-Espectrometria de Massas , Bactérias Gram-Negativas/citologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/citologia , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Monoterpenos/isolamento & purificação , Monoterpenos/farmacologia , Óleos Voláteis/química , Óleos de Plantas/química , Timol/isolamento & purificação , Timol/farmacologia
10.
Mol Cell Neurosci ; 80: 180-191, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27965018

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating disease characterized by the progressive loss of motor neurons. Neurons, astrocytes, oligodendrocytes and microglial cells all undergo pathological modifications in the onset and progression of ALS. A number of genes involved in the etiopathology of the disease have been identified, but a complete understanding of the molecular mechanisms of ALS has yet to be determined. Currently, people affected by ALS have a life expectancy of only two to five years from diagnosis. The search for a treatment has been slow and mostly unsuccessful, leaving patients in desperate need of better therapies. Until recently, most pre-clinical studies utilized the available ALS animal models. In the past years, the development of new protocols for isolation of patient cells and differentiation into relevant cell types has provided new tools to model ALS, potentially more relevant to the disease itself as they directly come from patients. The use of stem cells is showing promise to facilitate ALS research by expanding our understanding of the disease and help to identify potential new therapeutic targets and therapies to help patients. Advancements in high content analysis (HCA) have the power to contribute to move ALS research forward by combining automated image acquisition along with digital image analysis. With modern HCA machines it is possible, in a period of just a few hours, to observe changes in morphology and survival of cells, under the stimulation of hundreds, if not thousands of drugs and compounds. In this article, we will summarize the major molecular and cellular hallmarks of ALS, describe the advancements provided by the in vitro models developed in the last few years, and review the studies that have applied HCA to the ALS field to date.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Humanos
11.
Sensors (Basel) ; 18(7)2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-29987221

RESUMO

The forthcoming fifth generation (5G) networks are claimed to deliver the large amount of traffic generated by the huge number of heterogeneous devices that constitute the Internet of Things (IoT). This unprecedented volume of both human- and machine-generated traffic to be managed imposes 5G network operators to move the focus from throughput-optimized to energy-efficiency-optimized resource allocation solutions. Device-to-device (D2D) communications are recognized as an effective offloading technique that the 5G network can exploit to boost the capacity and energy efficiency of future 5G networks. In this paper, we design a technique to efficiently deliver multicast traffic in a 5G New Radio (NR) network by exploiting the benefits of D2D communication and single-frequency operation in order to improve the overall network energy efficiency. In the designed solution, the subset of devices in better channel conditions are served through a conventional multicast transmission, while cell-edge devices receive the multicast service from relay nodes that simultaneously transmit in D2D mode the same content. The dimension of the multicast serving area and the set of D2D connections to establish are chosen in order to maximize the overall network energy efficiency. Performed simulation results show the effectiveness of the proposed solution under varying frame configurations and number of multicast devices.

12.
J Enzyme Inhib Med Chem ; 32(1): 538-546, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28114822

RESUMO

pH-sensitive nonionic surfactant vesicles (niosomes) by polysorbate-20 (Tween-20) or polysorbate-20 derivatized by glycine (added as pH sensitive agent), were developed to deliver Ibuprofen (IBU) and Lidocaine (LID). For the physical-chemical characterization of vesicles (mean size, size distribution, zeta potential, vesicle morphology, bilayer properties and stability) dynamic light scattering (DLS), small angle X-ray scattering and fluorescence studies were performed. Potential cytotoxicity was evaluated on immortalized human keratinocyte cells (HaCaT) and on immortalized mouse fibroblasts Balb/3T3. In vivo antinociceptive activity (formalin test) and anti-inflammatory activity tests (paw edema induced by zymosan) in murine models were performed on drug-loaded niosomes. pH-sensitive niosomes were stable in the presence of 0 and 10% fetal bovine serum, non-cytotoxic and able to modify IBU or LID pharmacological activity in vivo. The synthesis of stimuli responsive surfactant, as an alternative to add pH-sensitive molecules to niosomes, could represent a promising delivery strategy for anesthetic and anti-inflammatory drugs.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Modelos Animais de Doenças , Ibuprofeno/farmacologia , Inflamação/tratamento farmacológico , Lidocaína/farmacologia , Lipossomos/química , Dor/tratamento farmacológico , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Células 3T3 BALB , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Ibuprofeno/administração & dosagem , Lidocaína/administração & dosagem , Lipossomos/administração & dosagem , Lipossomos/farmacologia , Camundongos , Medição da Dor , Tensoativos/química , Tensoativos/farmacologia
13.
J Enzyme Inhib Med Chem ; 32(1): 1265-1273, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28965424

RESUMO

The aim of the present work is to develop nanoemulsions (NEs), nanosized emulsions, manufactured for improving the delivery of active pharmaceutical ingredients. In particular, nanoemulsions composed of Neem seed oil, contain rich bioactive components, and Tween 20 as nonionic surfactant were prepared. A mean droplet size ranging from 10 to 100 nm was obtained by modulating the oil/surfactant ratio. Physicochemical characterisation was carried out evaluating size, ζ-potential, microviscosity, polarity and turbidity of the external shell and morphology, along with stability in simulated cerebrospinal fluid (CSF), activity of Neem oil alone and in NEs, HEp-2 cell interaction and cytotoxicity studies. This study confirms the formation of NEs by Tween 20 and Neem oil at different weight ratios with small and homogenous dimensions. The antioxidant activity of Neem oil alone and in NEs was comparable, whereas its cytotoxicity was strongly reduced when loaded in NEs after interaction with HEp-2 cells.


Assuntos
Antioxidantes/farmacologia , Glicerídeos/farmacologia , Nanopartículas/química , Terpenos/farmacologia , Antioxidantes/síntese química , Antioxidantes/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Emulsões/síntese química , Emulsões/química , Emulsões/farmacologia , Glicerídeos/síntese química , Glicerídeos/química , Humanos , Tamanho da Partícula , Relação Estrutura-Atividade , Terpenos/síntese química , Terpenos/química , Células Tumorais Cultivadas
14.
Ecotoxicol Environ Saf ; 139: 301-307, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28167442

RESUMO

The uptake of stable cesium (133Cs) by Calla palustris was evaluated from four different substrates: water, soil, keramzit (a clay granule) and water with the addition of a potassium compound, after an eight days exposure to a solution of 0.5mM cesium chloride. Stable cesium was used because it is commonly supposed that its uptake by plants is the same of that of radiocesium (137Cs). The plants were differentiated in their parts (roots, healthy leaves, dead leaves and flowers) and analyzed with ICP-MS. The lowest average concentration of absorbed Cs was found in plants exposed in soil (0.7mg/kg, S.D.=96.8), while the highest in plants exposed in water (147mg/kg, S.D.=51.7). During the experiment the water planted plants removed 31.6% of provided Cs while those planted in soil removed only 0.06%. The addition of potassium to water was tested because of the competition effect that arises between these two elements: this effect was confirmed with the result that the average uptake in the presence of potassium was lower (41mg/kg in exposed plants, S.D.=76.1). The uptake was also lower in the solid-based substrates (soil and keramzit), because of the known tendency of Cs to bind with soil particles, thus becoming less available to plants. There was no evidence that the different parts of the plant showed different uptake effectiveness, or that the health of the plant (evaluated with a qualitative method) had any effect on the uptake of Cs.


Assuntos
Calla (Planta)/metabolismo , Césio/metabolismo , Poluentes Ambientais/metabolismo , Componentes Aéreos da Planta/metabolismo , Biodegradação Ambiental , Césio/farmacologia , Cloretos/farmacologia , Minerais , Raízes de Plantas/metabolismo , Potássio/metabolismo , Potássio/farmacologia , Solo , Água
15.
Langmuir ; 32(5): 1241-9, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26740247

RESUMO

The use of nanocarriers, which respond to different stimuli controlling their physicochemical properties and biological responsivness, shows a growing interest in pharmaceutical science. The stimuli are activated by targeting tissues and biological compartments, e.g., pH modification, temperature, redox condition, enzymatic activity, or can be physically applied, e.g., a magnetic field and ultrasound. pH modification represents the easiest method of passive targeting, which is actually used to accumulate nanocarriers in cells and tissues. The aim of this paper was to physicochemically characterize pH-sensitive niosomes using different experimental conditions and demonstrate the effect of surfactant composition on the supramolecular structure of niosomes. In this attempt, niosomes, made from commercial (Tween21) and synthetic surfactants (Tween20 derivatives), were physicochemically characterized by using different techniques, e.g., transmission electron microscopy, Raman spectroscopy, and small-angle X-ray scattering. The changes of niosome structure at different pHs depend on surfactants, which can affect the supramolecular structure of colloidal nanocarriers and their potential use both in vitro and in vivo. At pH 7.4, the shape and structure of niosomes have been maintained; however, niosomes show some differences in terms of bilayer thicknesses, water penetration, membrane coupling, and cholesterol dispersion. The acid pH (5.5) can increase the bilayer fluidity, and affect the cholesterol depletion. In fact, Tween21 niosomes form large vesicles with lower curvature radius at acid pH; while Tween20-derivative niosomes increase the intrachain mobility within a more interchain correlated membrane. These results demonstrate that the use of multiple physicochemical procedures provides more information about supramolecular structures of niosomes and improves the opportunity to deeply investigate the effect of stimuli responsiveness on the niosome structure.


Assuntos
Bicamadas Lipídicas/química , Lipossomos/química , Polissorbatos/química , Físico-Química , Colesterol/química , Concentração de Íons de Hidrogênio , Espalhamento a Baixo Ângulo , Análise Espectral Raman , Difração de Raios X
16.
Mol Ther ; 23(2): 244-54, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25369767

RESUMO

Cerebral Dopamine Neurotrophic Factor (CDNF) and Mesencephalic Astrocyte-derived Neurotrophic factor (MANF) are members of a recently discovered family of neurotrophic factors (NTFs). Here, we used intranigral or intrastriatal lentiviral vector-mediated expression to evaluate their efficacy at protecting dopaminergic function in the 6-OHDA model of Parkinson's disease (PD). In contrast to the well-studied Glial-Derived Neurotrophic Factor (GDNF), no beneficial effects were demonstrated by striatal overexpression of either protein. Interestingly, nigral overexpression of CDNF decreased amphetamine-induced rotations and increased tyroxine hydroxylase (TH) striatal fiber density but had no effect on numbers of TH(+) cells in the SN. Nigral MANF overexpression had no effect on amphetamine-induced rotations or TH striatal fiber density but resulted in a significant preservation of TH(+) cells. Combined nigral overexpression of both factors led to a robust reduction in amphetamine-induced rotations, greater increase in striatal TH-fiber density and significant protection of TH(+) cells in the SN. We conclude that nigral CDNF and MANF delivery is more efficacious than striatal delivery. This is also the first study to demonstrate that combined NTF can have synergistic effects that result in enhanced neuroprotection, suggesting that multiple NTF delivery may be more efficacious for the treatment of PD than the single NTF approaches attempted so far.


Assuntos
Expressão Gênica , Fatores de Crescimento Neural/genética , Doença de Parkinson/genética , Substância Negra/metabolismo , Animais , Comportamento Animal , Linhagem Celular , Modelos Animais de Doenças , Ordem dos Genes , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Humanos , Imuno-Histoquímica , Lentivirus/genética , Fatores de Crescimento Neural/metabolismo , Neurônios/metabolismo , Oxidopamina/efeitos adversos , Doença de Parkinson/metabolismo , Doença de Parkinson/terapia , Ratos , Proteínas Recombinantes de Fusão , Substância Negra/patologia , Transdução Genética , Tirosina 3-Mono-Oxigenase/metabolismo
17.
Int J Pharm ; 661: 124380, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38950661

RESUMO

Melanoma is an aggressive form of skin cancer with elevated propensity to metastasize. One of the major critical issues in the treatment of oncological patients is represented by the development of toxicity and resistance to the available therapies. Great progress has been made in the field of nanotechnologies to limit the unwanted effects of anti-cancer treatments. We explored the potential of creating oil-in-water nanoemulsions composed of oleic acid, as a bioactive carrier for lipophilic drug delivery. This bioactive nanoemulsion was loaded with Curcumin, a natural fluorescent lipophilic compound, used as a model drug to evaluate nanoemulsion capability to: i) encapsulate the lipophilic moiety; ii) interact with the specific cells, and iii) improve the efficacy of the loaded model drug compared to the free one. Therefore, we evaluated the physical-chemical features of Curcumin-loaded nanoemulsions, confirming their pH sensibility and their stability over time. Moreover, the nanoemulsions were able to preserve the loaded Curcumin by degradation/destabilization phenomena. Finally, we verified some of the biological functions of Curcumin delivered by nanoemulsions in the B16F10 melanoma cell line. We obtained evidence of the biological action of Curcumin, suggesting oleic-based nanoemulsions as an efficient nanocarrier for lipophilic drug delivery.


Assuntos
Curcumina , Emulsões , Melanoma Experimental , Nanopartículas , Ácido Oleico , Curcumina/administração & dosagem , Curcumina/química , Curcumina/farmacologia , Concentração de Íons de Hidrogênio , Linhagem Celular Tumoral , Ácido Oleico/química , Animais , Camundongos , Melanoma Experimental/tratamento farmacológico , Nanopartículas/química , Portadores de Fármacos/química , Sobrevivência Celular/efeitos dos fármacos , Melanoma/tratamento farmacológico , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacologia , Sistemas de Liberação de Medicamentos
18.
Int J Pharm ; 649: 123672, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052280

RESUMO

The peptidyl-prolyl cis/trans isomerase Pin1 positively regulates numerous cancer-driving pathways, and it is overexpressed in several malignancies, including high-grade serous ovarian cancer (HGSOC). The findings that all-trans retinoic acid (ATRA) induces Pin1 degradation strongly support that ATRA treatment might be a promising approach for HGSOC targeted therapy. Nevertheless, repurposing ATRA into the clinics for the treatment of solid tumors remains an unmet need mainly due to the insurgence of resistance and its ineffective delivery. In the present study, niosomes have been employed for improving ATRA delivery in HGSOC cell lines. Characterization of niosomes including hydrodynamic diameter, ζ-potential, morphology, entrapment efficiency and stability over time and in culture media was performed. Furthermore, pH-sensitiveness and ATRA release profile were investigated to demonstrate the capability of these vesicles to release ATRA in a stimuli-responsive manner. Obtained results documented a nanometric and monodispersed samples with negative ζ-potential. ATRA was efficiently entrapped, and a substantial release was observed in the presence of acidic pH (pH 5.5). Finally, unloaded niosomes showed good biocompatibility while ATRA-loaded niosomes significantly increased ATRA Pin1 inhibitory activity, which was consistent with cell growth inhibition. Taken together, ATRA-loaded niosomes might represent an appealing therapeutic strategy for HGSOC therapy.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Humanos , Feminino , Lipossomos/uso terapêutico , Tretinoína/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Concentração de Íons de Hidrogênio
19.
Pharmaceutics ; 16(7)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39065624

RESUMO

Most clinical isolates of both Staphylococcus aureus and Staphylococcus epidermidis show the capacity to adhere to abiotic surfaces and to develop biofilms resulting in a contribution to chronic human skin infections. Antibiotic resistance and poor biofilm penetration are the main causes of ineffective therapeutic treatment in killing bacteria within biofilms. A possible strategy could be represented by drug delivery systems, such as nanoemulsions (composed of bioactive oil, surfactant and water phase), which are useful for enhancing the drug permeation of a loaded drug inside the biofilm and its activity. Phytochemical characterization of Pistacia lentiscus oil (LO) by direct infusion Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) allowed the identification of bioactive compounds with antimicrobial properties, including fatty acids and phenolic compounds. Several monoterpenes and sesquiterpenes have been also detected and confirmed by gas chromatography-mass spectrometric (GC-MS) analysis, together providing a complete metabolomic profiling of LO. In the present study, a nanoemulsion composed of LO has been employed for improving Levofloxacin water solubility. A deep physical-chemical characterization of the nanoemulsion including hydrodynamic diameter, ζ-potential, morphology, entrapment efficiency, stability release and permeation studies was performed. Additionally, the antimicrobial/antibiofilm activity of these preparations was evaluated against reference and clinical Staphylococcus spp. strains. In comparison to the free-form antibiotic, the loaded NE nanocarriers exhibited enhanced antimicrobial activity against the sessile forms of Staphylococcus spp. strains.

20.
Sci Rep ; 14(1): 10196, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702355

RESUMO

Urinary tract infections (UTIs) are the most common bacterial infections and uropathogenic Escherichia coli (UPEC) is the main etiological agent of UTIs. UPEC can persist in bladder cells protected by immunological defenses and antibiotics and intracellular behavior leads to difficulty in eradicating the infection. The aim of this paper is to design, prepare and characterize surfactant-based nanocarriers (niosomes) able to entrap antimicrobial drug and potentially to delivery and release antibiotics into UPEC-infected cells. In order to validate the proposed drug delivery system, gentamicin, was chosen as "active model drug" due to its poor cellular penetration. The niosomes physical-chemical characterization was performed combining different techniques: Dynamic Light Scattering Fluorescence Spectroscopy, Transmission Electron Microscopy. Empty and loaded niosomes were characterized in terms of size, ζ-potential, bilayer features and stability. Moreover, Gentamicin entrapped amount was evaluated, and the release study was also carried out. In addition, the effect of empty and loaded niosomes was studied on the invasion ability of UPEC strains in T24 bladder cell monolayers by Gentamicin Protection Assay and Confocal Microscopy. The observed decrease in UPEC invasion rate leads us to hypothesize a release of antibiotic from niosomes inside the cells. The optimization of the proposed drug delivery system could represent a promising strategy to significatively enhance the internalization of antimicrobial drugs.


Assuntos
Antibacterianos , Gentamicinas , Lipossomos , Escherichia coli Uropatogênica , Gentamicinas/farmacologia , Escherichia coli Uropatogênica/efeitos dos fármacos , Humanos , Antibacterianos/farmacologia , Portadores de Fármacos/química , Infecções Urinárias/microbiologia , Infecções Urinárias/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa