Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Angew Chem Int Ed Engl ; 60(33): 17893-17897, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34060204

RESUMO

Photocatalytic hydrogen atom transfer is a very powerful strategy for the regioselective C(sp3 )-H functionalization of organic molecules. Herein, we report on the unprecedented combination of decatungstate hydrogen atom transfer photocatalysis with the oxidative radical-polar crossover concept to access the direct net-oxidative C(sp3 )-H heteroarylation. The present methodology demonstrates a high functional group tolerance (40 examples) and is scalable when using continuous-flow reactor technology. The developed protocol is also amenable to the late-stage functionalization of biologically relevant molecules such as stanozolol, (-)-ambroxide, podophyllotoxin, and dideoxyribose.

2.
Org Biomol Chem ; 17(6): 1384-1388, 2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30676602

RESUMO

BrCCl3 represents a rarely used benzylic brominating reagent with complementary reactivity to other reagents. Its reactivity has been revisited in continuous flow, revealing compatibility with electron-rich aromatic substrates. This has brought about the development of a p-methoxybenzyl bromide generator for PMB protection, which was successfully demonstrated on a pharmaceutically relevant intermediate on 11 g scale, giving 91% yield and a PMB-Br space-time-yield of 1.27 kg L-1 h-1.

3.
J Am Chem Soc ; 140(50): 17433-17438, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30516995

RESUMO

A strategy for the installation of small alkyl fragments onto pharmaceutically relevant aliphatic structures has been established via metallaphotoredox catalysis. Herein, we report that tris(trimethylsilyl)silanol can be employed as an effective halogen abstraction reagent that, in combination with photoredox and nickel catalysis, allows a generic approach to Csp3-Csp3 cross-electrophile coupling. In this study, we demonstrate that a variety of aliphatic drug-like groups can be successfully coupled with a number of commercially available small alkyl electrophiles, including methyl tosylate and strained cyclic alkyl bromides. Moreover, the union of two secondary aliphatic carbon centers, a long-standing challenge for organic molecule construction, has been accomplished with a wide array of structural formats. Last, this technology can be selectively merged with Csp2-Csp3 aryl-alkyl couplings to build drug-like systems in a highly modular fashion.


Assuntos
Hidrocarbonetos Bromados/química , Compostos de Trimetilsilil/química , Alcanos/síntese química , Catálise/efeitos da radiação , Complexos de Coordenação/química , Complexos de Coordenação/efeitos da radiação , Irídio/química , Irídio/efeitos da radiação , Luz , Estrutura Molecular , Níquel/química
4.
Chemistry ; 21(37): 12894-8, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-26239967

RESUMO

Diazo anhydrides (Ar-N=N-O-N=N-Ar) have been known since 1896 but have rarely been used in synthesis. This communication describes the development of a photochemical catalyst-free C-H arylation methodology for the preparation of bi(hetero)aryls by the one-pot reaction of anilines with tert-butyl nitrite and (hetero)arenes under neutral conditions. The key step in this procedure is the in situ formation and subsequent photochemical (>300 nm) homolytic cleavage of a transient diazo anhydride intermediate. The generated aryl radical then efficiently reacts with a (hetero)arene to form the desired bi(hetero)aryls producing only nitrogen, water, and tert-butanol as byproducts. The scope of the reaction for several substituted anilines and (hetero)arenes was investigated. A continuous-flow protocol increasing selectivity and safety has been developed enabling the experimentally straightforward preparation of a variety of substituted bi(hetero)aryls within 45 min of reaction time.

5.
J Org Chem ; 79(1): 223-9, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24261546

RESUMO

A continuous-flow protocol for the bromination of benzylic compounds with N-bromosuccinimide (NBS) is presented. The radical reactions were activated with a readily available household compact fluorescent lamp (CFL) using a simple flow reactor design based on transparent fluorinated ethylene polymer (FEP) tubing. All of the reactions were carried out using acetonitrile as the solvent, thus avoiding hazardous chlorinated solvents such as CCl4. For each substrate, only 1.05 equiv of NBS was necessary to fully transform the benzylic starting material into the corresponding bromide. The general character of the procedure was demonstrated by brominating a diverse set of 19 substrates containing different functional groups. Good to excellent isolated yields were obtained in all cases. The novel flow protocol can be readily scaled to multigram quantities by operating the reactor for longer time periods (throughput 30 mmol h(-1)), which is not easily possible in batch photochemical reactors. The bromination protocol can also be performed with equal efficiency in a larger flow reactor utilizing a more powerful lamp. For the bromination of phenylacetone as a model, a productivity of 180 mmol h(-1) for the desired bromide was achieved.


Assuntos
Acetona/análogos & derivados , Compostos de Benzil/síntese química , Politetrafluoretileno/química , Acetona/química , Compostos de Benzil/química , Bromosuccinimida/química , Catálise , Halogenação , Luz , Estrutura Molecular , Processos Fotoquímicos
6.
J Org Chem ; 79(17): 8486-90, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25144336

RESUMO

A continuous-flow protocol for the light-induced fluorination of benzylic compounds is presented. The procedure uses Selectfluor as the fluorine source and xanthone as an inexpensive and commercially available photoorganocatalyst. The flow photoreactor is based on transparent fluorinated ethylene propylene tubing and a household compact fluorescent lamp. The combination of xanthone with black-light irradiation results in very efficient fluorination. Good to excellent isolated yields were obtained for a variety of substrates bearing different functional groups applying residence times below 30 min.

7.
ACS Cent Sci ; 8(1): 51-56, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35106372

RESUMO

Carbon-nitrogen bonds are ubiquitous in biologically active compounds, prompting synthetic chemists to design various methodologies for their preparation. Arguably, the ideal synthetic approach is to be able to directly convert omnipresent C-H bonds in organic molecules, enabling even late-stage functionalization of complex organic scaffolds. While this approach has been thoroughly investigated for C(sp2)-H bonds, only few examples have been reported for the direct amination of aliphatic C(sp3)-H bonds. Herein, we report the use of a newly developed flow photoreactor equipped with high intensity chip-on-board LED technology (144 W optical power) to trigger the regioselective and scalable C(sp3)-H amination via decatungstate photocatalysis. This high-intensity reactor platform enables simultaneously fast results gathering and scalability in a single device, thus bridging the gap between academic discovery (mmol scale) and industrial production (>2 kg/day productivity). The photocatalytic transformation is amenable to the conversion of both activated and nonactivated hydrocarbons, leading to protected hydrazine products by reaction with azodicarboxylates. We further validated the robustness of our manifold by designing telescoped flow approaches for the synthesis of pyrazoles, phthalazinones and free amines.

8.
Appl Spectrosc ; 76(1): 38-50, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34911387

RESUMO

A continuous-flow electrochemical synthesis platform has been developed to enable self-optimization of reaction conditions of organic electrochemical reactions using attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR) and gas chromatography (GC) as online real-time monitoring techniques. We have overcome the challenges in using ATR FT-IR as the downstream analytical methods imposed when a large amount of hydrogen gas is produced from the counter electrode by designing two types of gas-liquid separators (GLS) for analysis of the product mixture flowing from the electrochemical reactor. In particular, we report an integrated GLS with an ATR FT-IR probe at the reactor outlet to give a facile and low-cost solution to determining the concentrations of products in gas-liquid two-phase flow. This approach provides a reliable method for quantifying low-volatile analytes, which can be problematic to be monitored by GC. Two electrochemical reactions the methoxylation of 1-formylpyrrolidine and the oxidation of 3-bromobenzyl alcohol were investigated to demonstrate that the optimal conditions can be located within the pre-defined multi-dimensional reaction parameter spaces without intervention of the operator by using the stable noisy optimization by branch and FIT (SNOBFIT) algorithm.

9.
ACS Catal ; 12(18): 11216-11225, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36158902

RESUMO

A strategy for both cross-electrophile coupling and 1,2-dicarbofunctionalization of olefins has been developed. Carbon-centered radicals are generated from alkyl bromides by merging benzophenone hydrogen atom transfer (HAT) photocatalysis and silyl radical-induced halogen atom transfer (XAT) and are subsequently intercepted by a nickel catalyst to forge the targeted C(sp3)-C(sp2) and C(sp3)-C(sp3) bonds. The mild protocol is fast and scalable using flow technology, displays broad functional group tolerance, and is amenable to a wide variety of medicinally relevant moieties. Mechanistic investigations reveal that the ketone catalyst, upon photoexcitation, is responsible for the direct activation of the silicon-based XAT reagent (HAT-mediated XAT) that furnishes the targeted alkyl radical and is ultimately involved in the turnover of the nickel catalytic cycle.

10.
Org Process Res Dev ; 25(8): 1966-1973, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35663840

RESUMO

We describe herein a two-step process for the conversion of serine to a wide array of optically pure unnatural amino acids. This method utilizes a photocatalytic cross-electrophile coupling between a bromoalkyl intermediate and a diverse set of aryl halides to produce artificial analogues of phenylalanine, tryptophan, and histidine. The reaction is tolerant of a broad range of functionalities and can be leveraged toward the scalable synthesis of valuable pharmaceutical scaffolds via flow technology.

11.
ACS Cent Sci ; 7(7): 1126-1134, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34345665

RESUMO

Photoredox catalysis has emerged as a powerful and versatile platform for the synthesis of complex molecules. While photocatalysis is already broadly used in small-scale batch chemistry across the pharmaceutical sector, recent efforts have focused on performing these transformations in process chemistry due to the inherent challenges of batch photocatalysis on scale. However, translating optimized batch conditions to flow setups is challenging, and a general approach that is rapid, convenient, and inexpensive remains largely elusive. Herein, we report the development of a new approach that uses a microscale high-throughput experimentation (HTE) platform to identify optimal reaction conditions that can be directly translated to flow systems. A key design point is to simulate the flow-vessel pathway within a microscale reaction plate, which enables the rapid identification of optimal flow reaction conditions using only a small number of simultaneous experiments. This approach has been validated against a range of widely used photoredox reactions and, importantly, was found to translate accurately to several commercial flow reactors. We expect that the generality and operational efficiency of this new HTE approach to photocatalysis will allow rapid identification of numerous flow protocols for scale.

12.
Org Lett ; 19(8): 2050-2053, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28375019

RESUMO

Electrochemical deprotection of p-methoxybenzyl (PMB) ethers was performed in an undivided electrochemical flow reactor in MeOH solution, leading to the unmasked alcohol and p-methoxybenzaldehyde dimethyl acetal as a byproduct. The electrochemical method removes the need for chemical oxidants, and added electrolyte (BF4NEt4) can be recovered and reused. The method was applied to 17 substrates with high conversions in a single pass, yields up to 92%, and up to 7.5 g h-1 productivity. The PMB protecting group was also selectively removed in the presence of some other common alcohol protecting groups.

13.
Angew Chem Int Ed Engl ; 40(11): 2101-2103, 2001 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29712185

RESUMO

syn to tin is the preferred mode of addition of organolithium reagents to the carbonyl group of cyclic ketones with a ß-stannylvinyl group. This remarkable remote control is a consequence of the anchoring of the organolithium reagent by the tin and carbonyl groups.

14.
Org Lett ; 16(3): 896-9, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24432711

RESUMO

A continuous-flow, two-step procedure for the preparation of α-CF3-substituted carbonyl compounds has been developed. The carbonyl substrates were converted in situ into the corresponding silyl enol ethers, mixed with the CF3 radical source, and then irradiated with visible light using a flow reactor based on transparent tubing and a household compact fluorescent lamp. The continuous protocol uses Eosin Y as an inexpensive photoredox catalyst and requires only 20 min to complete the two reaction steps.


Assuntos
Hidrocarbonetos Fluorados/química , Cetonas/química , Metais/química , Catálise , Hidrocarbonetos Fluorados/síntese química , Luz , Metilação , Estrutura Molecular
17.
J Am Chem Soc ; 125(39): 12049-56, 2003 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-14505426

RESUMO

The addition of organometallic reagents to cyclic ketones bearing stannyl groups at an appropriate distance to the carbonyl group occurs with a high level of stereocontrol, giving alcohols resulting from attack of the nucleophile syn to the tin center. This remarkable remote control is a consequence of the anchoring of the organometallic reagent by the tin and carbonyl groups. The degree of selectivity observed depends on the spatial distance between the carbonyl group and the tin center. (Z)-beta-Stannylvinyl ketones (Sn/CO separation: 5 bonds) react with organolithium reagents, showing a high degree of stereocontrol. On the contrary, the analogous ketones with E stereochemistry do not show selectivity at all. In the case of beta-stannyl ketones (Sn/CO separation: 3 bonds), the long distance between the tin center and the carbonyl group does not favor selective addition except when allyllithium derivatives are used. A chelation-controlled pathway assisted by the three-carbon chain of the allyl anion, which compensates the distance between tin and carbonyl groups, has been proposed. The selectivity found for ketones 34-36 (Sn/CO separation: 4 bonds) depends on their structure and varies with the hybridization of the carbon atom linked to the trialkyltin group. Deuterium labeling experiments as well as ab initio molecular-orbital analysis support the mechanistic hypothesis of an intramolecular delivery. Grignard reagents are less selective than organolithium compounds.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa