Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Plant Physiol ; 152(2): 685-97, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20018601

RESUMO

A putative phosphatase, LSF1 (for LIKE SEX4; previously PTPKIS2), is closely related in sequence and structure to STARCH-EXCESS4 (SEX4), an enzyme necessary for the removal of phosphate groups from starch polymers during starch degradation in Arabidopsis (Arabidopsis thaliana) leaves at night. We show that LSF1 is also required for starch degradation: lsf1 mutants, like sex4 mutants, have substantially more starch in their leaves than wild-type plants throughout the diurnal cycle. LSF1 is chloroplastic and is located on the surface of starch granules. lsf1 and sex4 mutants show similar, extensive changes relative to wild-type plants in the expression of sugar-sensitive genes. However, although LSF1 and SEX4 are probably both involved in the early stages of starch degradation, we show that LSF1 neither catalyzes the same reaction as SEX4 nor mediates a sequential step in the pathway. Evidence includes the contents and metabolism of phosphorylated glucans in the single mutants. The sex4 mutant accumulates soluble phospho-oligosaccharides undetectable in wild-type plants and is deficient in a starch granule-dephosphorylating activity present in wild-type plants. The lsf1 mutant displays neither of these phenotypes. The phenotype of the lsf1/sex4 double mutant also differs from that of both single mutants in several respects. We discuss the possible role of the LSF1 protein in starch degradation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Folhas de Planta/metabolismo , Amido/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cloroplastos/enzimologia , DNA Bacteriano/genética , Glucanos/metabolismo , Mutagênese Insercional , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação , Folhas de Planta/genética , RNA de Plantas/genética
2.
Plant J ; 55(2): 323-34, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18419779

RESUMO

Starch phosphorylation by glucan, water dikinase (GWD; EC 2.7.9.4) is an essential step in the breakdown of native starch particles, but the underlying mechanisms have remained obscure. In this paper, the initial reactions of starch degradation were analyzed using crystallized maltodextrins as model carbohydrates. As revealed by X-ray diffraction analysis, the crystallized maltodextrins represent the B-type starch allomorph. Recombinant GWD phosphorylated crystalline maltodextrins with a high specific activity (55-60 nmol mg-1 protein min-1), but exhibited very little activity with the same maltodextrins that had been solubilized by heat treatment. Recombinant phosphoglucan, water dikinase (PWD; EC 2.7.9.5) utilized the crystalline maltodextrins only when pre-phosphorylated by GWD. Phosphorylation of crystalline maltodextrins, as catalyzed by GWD, initiated solubilization of neutral as well as phosphorylated glucans. In both the insoluble and the soluble state, mono-, di- and triphosphorylated alpha-glucans were observed, with wide and overlapping ranges of degree of polymerization. Thus, the substrate specificity of the GWD is defined by the physical arrangement of alpha-glucans rather than by structural parameters, such as the distribution of branching points or degree of polymerization. Unlike GWD and PWD, recombinant beta-amylase isozyme 3 (BAM3), which has been shown to be essential for plastidial starch degradation, preferentially degraded soluble maltodextrins rather than crystallized glucans. In summary, two conclusions were reached. Firstly, carbohydrate targets of GWD are primarily defined by the molecular order of glucan helices. Secondly, GWD-catalyzed phosphorylation mediates the phase transition of glucans from a highly ordered to a less ordered and hydrated state.


Assuntos
Fosfotransferases (Aceptores Pareados)/metabolismo , Polissacarídeos/metabolismo , Fosforilação , Proteínas de Plantas/metabolismo , Plantas/enzimologia , Polissacarídeos/química , Solubilidade , Amido/metabolismo , Especificidade por Substrato
3.
Mol Biol Evol ; 25(3): 536-48, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18093994

RESUMO

Eukaryotic cells are composed of a variety of membrane-bound organelles that are thought to derive from symbiotic associations involving bacteria, archaea, or other eukaryotes. In addition to acquiring the plastid, all Archaeplastida and some of their endosymbiotic derivatives can be distinguished from other organisms by the fact that they accumulate starch, a semicrystalline-storage polysaccharide distantly related to glycogen and never found elsewhere. We now provide the first evidence for the existence of starch in a particular species of single-cell diazotrophic cyanobacterium. We provide evidence for the existence in the eukaryotic host cell at the time of primary endosymbiosis of an uridine diphosphoglucose (UDP-glucose)-based pathway similar to that characterized in amoebas. Because of the monophyletic origin of plants, we can define the genetic makeup of the Archaeplastida ancestor with respect to storage polysaccharide metabolism. The most likely enzyme-partitioning scenario between the plastid's ancestor and its eukaryotic host immediately suggests the precise nature of the ancient metabolic symbiotic relationship. The latter consisted in the export of adenosine diphosphoglucose (ADP-glucose) from the cyanobiont in exchange for the import of reduced nitrogen from the host. We further speculate that the monophyletic origin of plastids may lie in an organism with close relatedness to present-day group V cyanobacteria.


Assuntos
Cianobactérias/genética , Filogenia , Plantas/metabolismo , Amido/metabolismo , Simbiose/fisiologia , Adenosina Difosfato Glucose/metabolismo , Evolução Biológica , Compartimento Celular/genética , Compartimento Celular/fisiologia , Cianobactérias/metabolismo , Glucose/metabolismo , Nitrogênio/metabolismo , Plantas/genética , Simbiose/genética , Uridina Difosfato Glucose/metabolismo
4.
Arch Biochem Biophys ; 489(1-2): 92-8, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19664588

RESUMO

Of the four chloroplast beta-amylase (BAM) proteins identified in Arabidopsis, BAM3 and BAM4 were previously shown to play the major roles in leaf starch breakdown, although BAM4 apparently lacks key active site residues and beta-amylase activity. Here we tested multiple BAM4 proteins with different N-terminal sequences with a range of glucan substrates and assay methods, but detected no alpha-1,4-glucan hydrolase activity. BAM4 did not affect BAM1, BAM2 or BAM3 activity even when added in 10-fold excess, nor the BAM3-catalysed release of maltose from isolated starch granules in the presence of glucan water dikinase. However, BAM4 binds to amylopectin and to amylose-Sepharose whereas BAM2 has very low beta-amylase activity and poor glucan binding. The low activity of BAM2 may be explained by poor glucan binding but absence of BAM4 activity is not. These results suggest that BAM4 facilitates starch breakdown by a mechanism involving direct interaction with starch or other alpha-1,4-glucan.


Assuntos
Amilopectina/química , Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Folhas de Planta/enzimologia , Amido/química , beta-Amilase/química , Amilopectina/metabolismo , Proteínas de Arabidopsis/metabolismo , Catálise , Ligação Proteica/fisiologia , Amido/metabolismo , beta-Amilase/metabolismo
5.
Anal Biochem ; 379(1): 73-9, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18452698

RESUMO

The quantification of phosphate bound to the C6 and C3 positions of glucose residues in starch has received increasing interest since the importance of starch phosphorylation for plant metabolism was discovered. The method described here is based on the observation that the isobaric compounds glucose-6-phosphate (Glc6P) and glucose-3-phosphate (Glc3P) exhibit significantly different fragmentation patterns in negative ion electrospray tandem mass spectrometry (MS/MS). A simple experiment involving collision-induced dissociation (CID) MS(2) spectra of the sample and the two reference substances Glc3P and Glc6P permitted the quantification of the relative amounts of the two compounds in monosaccharide mixtures generated by acid hydrolysis of starch. The method was tested on well-characterized potato tuber starch. The results are consistent with those obtained by NMR analysis. In contrast to NMR, however, the presented method is fast and can be performed on less than 1 mg of starch. Starch samples of other origins exhibiting a variety of phosphorylation degrees were analyzed to assess the sensitivity and robustness of the method.


Assuntos
Glucose/análise , Amido/química , Espectrometria de Massas em Tandem/métodos , Glucose/química , Glucose-6-Fosfato/química , Glucofosfatos/química , Espectroscopia de Ressonância Magnética , Fosforilação
6.
Trends Plant Sci ; 10(3): 130-7, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15749471

RESUMO

During the day, plants accumulate starch in their leaves as an energy source for the coming night. Based on recent findings, the prevailing view of how the transitory starch is remobilized needs considerable revision. Analyses of transgenic and mutant plants demonstrate that plastidic glucan phosphorylase is not required for normal starch breakdown and cast doubt on the presumed essential role of alpha-amylase but do show that beta-amylase is important. Repression of the activity of a plastidic beta-amylase, the export of its product (maltose) or further metabolism of maltose by a newly identified transglucosidase impairs starch degradation. Breakdown of particulate starch also depends on the activity of glucan-water dikinase, which phosphorylates glucosyl residues within the polymer.


Assuntos
Folhas de Planta/metabolismo , Amido/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Escuridão , Glucose/metabolismo , Luz , Maltose/metabolismo , Fenótipo , alfa-Amilases/metabolismo , beta-Amilase/metabolismo
7.
FEBS Lett ; 580(20): 4872-6, 2006 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-16914145

RESUMO

Glucan, water dikinase (GWD) and phosphoglucan, water dikinase (PWD) are required for normal starch metabolism. We analysed starch phosphorylation in Arabidopsis wild-type plants and mutants lacking either GWD or PWD using (31)P NMR. Phosphorylation at both C6- and C3-positions of glucose moieties in starch was drastically decreased in GWD-deficient mutants. In starch from PWD-deficient plants C3-bound phosphate was reduced to levels close to the detection limit. The latter result contrasts with previous reports according to which GWD phosphorylates both C6- and C3-positions. In these studies, phosphorylation had been analysed by HPLC of acid-hydrolysed glucans. We now show that maltose-6-phosphate, a product of incomplete starch hydrolysis, co-eluted with glucose-3-phosphate under the chromatographic conditions applied. Re-examination of the specificity of the dikinases using an improved method demonstrates that C6- and C3-phosphorylation is selectively catalysed by GWD and PWD, respectively.


Assuntos
Proteínas de Arabidopsis/metabolismo , Glucanos/metabolismo , Glucose/metabolismo , Fosfotransferases (Aceptores Pareados)/metabolismo , Amido/metabolismo , Proteínas de Arabidopsis/genética , Glucanos/química , Glucose/química , Ressonância Magnética Nuclear Biomolecular , Fosforilação , Fosfotransferases (Aceptores Pareados)/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Amido/química
8.
New Phytol ; 159(1): 195-202, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33873676

RESUMO

• Stomatal opening is caused by guard cell swelling due to an accumulation of osmotica. We investigated the release of carbon from guard cell chloroplasts as a source for the production of organic osmotica. • Photosynthetically active chloroplasts were isolated from guard cell protoplasts of Vicia faba. Export of metabolites into the surrounding medium was analyzed by silicone oil filtering centrifugation and spectrophotometrically by coupled metabolite assays. Effects of external oxaloacetate and 3-phosphoglycerate on photosynthetic electron transport were examined by recording chlorophyll fluorescence. • In the light, guard cell chloroplasts exported triose phosphates, glucose, maltose and hexose phosphates. The presence of phosphate in the medium was essential for the release of phosphorylated compounds and also strongly enhanced the export of glucose and maltose. Total efflux of carbon from illuminated guard cell chloroplasts was on average 486 µatom C (mg Chl)-1  h-1 , which was significant with respect to the carbon requirement for stomatal opening. • Metabolites released by illuminated guard cell chloroplasts originated predominantly from starch breakdown. Photosynthetic electron transport provided redox power for the reduction of oxaloacetate and 3-phosphoglycerate.

9.
Physiol Plant ; 114(1): 2-12, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11982928

RESUMO

In turions of Spirodela polyrhiza (L.) Schleiden, net degradation of storage starch is controlled by a special low fluence response of phytochrome requiring illumination for several days. This light effect has been used to study protein-starch interactions that occur prior to and during net degradation of starch. Following various pretreatments on S. polyrhiza turions, native starch granules were isolated and two fractions of starch-related proteins were distinguished: proteins enclosed within the starch particles (starch-internalized proteins) and those attached to the surface (starch-associated proteins). The pattern of starch-associated proteins as resolved by SDS-PAGE was more complex than that of starch-internalized proteins and varied depending upon the pretreatment of the turions. Two starch associated proteins were identified immunochemically as alpha-amylase (EC 3.2.1.1) and the R1 protein (Lorberth et al. (1998) Nature Biotechnology 16: 473-477). Dark-pretreatment of non-dormant turions does not induce starch net degradation. Under these conditions, alpha-amylase and R1 were bound to the surface of the starch granules. Continuous illumination with red light induces a rapid degradation of starch. Within the first 24 h of illumination the level of starch-associated alpha-amylase transiently increased and subsequently decreased rapidly. Similarly, the amount of the starch-associated R1 also decreased during illumination. The dissociation of both alpha-amylase and R1 from the starch granules preceded the decrease in starch content. However, binding of the two proteins to starch granules remained unchanged when the turions did not perform net starch degradation (as observed during continuous darkness, orthophosphate deficiency, or dormancy of the turions). Thus, during net starch degradation, so far unidentified changes are postulated to occur at the surface of the starch particles that are relevant for protein binding. This conclusion was supported by in vitro studies in which the binding of purified beta-amylase (EC 3.2.1.2) to starch granules isolated from turions following various pretreatments was monitored. The enzyme did bind to starch granules prepared from dark-stored turions (in which starch degradation had not been initiated), but not to those isolated from illuminated (starch degrading) turions.

10.
Plant Cell ; 21(1): 334-46, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19141707

RESUMO

Starch is the major storage carbohydrate in plants. It is comprised of glucans that form semicrystalline granules. Glucan phosphorylation is a prerequisite for normal starch breakdown, but phosphoglucan metabolism is not understood. A putative protein phosphatase encoded at the Starch Excess 4 (SEX4) locus of Arabidopsis thaliana was recently shown to be required for normal starch breakdown. Here, we show that SEX4 is a phosphoglucan phosphatase in vivo and define its role within the starch degradation pathway. SEX4 dephosphorylates both the starch granule surface and soluble phosphoglucans in vitro, and sex4 null mutants accumulate phosphorylated intermediates of starch breakdown. These compounds are linear alpha-1,4-glucans esterified with one or two phosphate groups. They are released from starch granules by the glucan hydrolases alpha-amylase and isoamylase. In vitro experiments show that the rate of starch granule degradation is increased upon simultaneous phosphorylation and dephosphorylation of starch. We propose that glucan phosphorylating enzymes and phosphoglucan phosphatases work in synergy with glucan hydrolases to mediate efficient starch catabolism.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Proteínas Tirosina Fosfatases/metabolismo , Amido/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Metabolismo dos Carboidratos , DNA Bacteriano/genética , Glucanos/metabolismo , Mutagênese Insercional , Fosforilação , Proteínas Tirosina Fosfatases/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
11.
Plant Physiol ; 145(1): 17-28, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17631522

RESUMO

Glucan phosphorylating enzymes are required for normal mobilization of starch in leaves of Arabidopsis (Arabidopsis thaliana) and potato (Solanum tuberosum), but mechanisms underlying this dependency are unknown. Using two different activity assays, we aimed to identify starch degrading enzymes from Arabidopsis, whose activity is affected by glucan phosphorylation. Breakdown of granular starch by a protein fraction purified from leaf extracts increased approximately 2-fold if the granules were simultaneously phosphorylated by recombinant potato glucan, water dikinase (GWD). Using matrix-assisted laser-desorption ionization mass spectrometry several putative starch-related enzymes were identified in this fraction, among them beta-AMYLASE1 (BAM1; At3g23920) and ISOAMYLASE3 (ISA3; At4g09020). Experiments using purified recombinant enzymes showed that BAM1 activity with granules similarly increased under conditions of simultaneous starch phosphorylation. Purified recombinant potato ISA3 (StISA3) did not attack the granular starch significantly with or without glucan phosphorylation. However, starch breakdown by a mixture of BAM1 and StISA3 was 2 times higher than that by BAM1 alone and was further enhanced in the presence of GWD and ATP. Similar to BAM1, maltose release from granular starch by purified recombinant BAM3 (At4g17090), another plastid-localized beta-amylase isoform, increased 2- to 3-fold if the granules were simultaneously phosphorylated by GWD. BAM activity in turn strongly stimulated the GWD-catalyzed phosphorylation. The interdependence between the activities of GWD and BAMs offers an explanation for the severe starch excess phenotype of GWD-deficient mutants.


Assuntos
Arabidopsis/enzimologia , Fosfotransferases (Aceptores Pareados)/metabolismo , Solanum tuberosum/enzimologia , Amido/metabolismo , beta-Amilase/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/isolamento & purificação , Fosforilação , Extratos Vegetais/metabolismo , Folhas de Planta/enzimologia , Plastídeos/enzimologia , Proteínas Recombinantes/metabolismo , Solanum tuberosum/metabolismo
12.
Plant J ; 48(2): 274-85, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17018036

RESUMO

Among the three distinct starch phosphorylase activities detected in Chlamydomonas reinhardtii, two distinct plastidial enzymes (PhoA and PhoB) are documented while a single extraplastidial form (PhoC) displays a higher affinity for glycogen as in vascular plants. The two plastidial phosphorylases are shown to function as homodimers containing two 91-kDa (PhoA) subunits and two 110-kDa (PhoB) subunits. Both lack the typical 80-amino-acid insertion found in the higher plant plastidial forms. PhoB is exquisitely sensitive to inhibition by ADP-glucose and has a low affinity for malto-oligosaccharides. PhoA is more similar to the higher plant plastidial phosphorylases: it is moderately sensitive to ADP-glucose inhibition and has a high affinity for unbranched malto-oligosaccharides. Molecular analysis establishes that STA4 encodes PhoB. Chlamydomonas reinhardtii strains carrying mutations at the STA4 locus display a significant decrease in amounts of starch during storage that correlates with the accumulation of abnormally shaped granules containing a modified amylopectin structure and a high amylose content. The wild-type phenotype could be rescued by reintroduction of the cloned wild-type genomic DNA, thereby demonstrating the involvement of phosphorylase in storage starch synthesis.


Assuntos
Proteínas de Algas/fisiologia , Chlamydomonas reinhardtii/enzimologia , Fosforilases/fisiologia , Amido/biossíntese , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Amilopectina/química , Amilopectina/metabolismo , Amilose/metabolismo , Animais , Chlamydomonas reinhardtii/genética , Teste de Complementação Genética , Isoenzimas/análise , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Microscopia Eletrônica de Varredura , Mutação , Nitrogênio/metabolismo , Fosforilases/genética , Fosforilases/metabolismo , Amido/ultraestrutura
13.
Plant Physiol ; 137(1): 242-52, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15618411

RESUMO

The phosphorylation of amylopectin by the glucan, water dikinase (GWD; EC 2.7.9.4) is an essential step within starch metabolism. This is indicated by the starch excess phenotype of GWD-deficient plants, such as the sex1-3 mutant of Arabidopsis (Arabidopsis thaliana). To identify starch-related enzymes that rely on glucan-bound phosphate, we studied the binding of proteins extracted from Arabidopsis wild-type leaves to either phosphorylated or nonphosphorylated starch granules. Granules prepared from the sex1-3 mutant were prephosphorylated in vitro using recombinant potato (Solanum tuberosum) GWD. As a control, the unmodified, phosphate free granules were used. An as-yet uncharacterized protein was identified that preferentially binds to the phosphorylated starch. The C-terminal part of this protein exhibits similarity to that of GWD. The novel protein phosphorylates starch granules, but only following prephosphorylation with GWD. The enzyme transfers the beta-P of ATP to the phosphoglucan, whereas the gamma-P is released as orthophosphate. Therefore, the novel protein is designated as phosphoglucan, water dikinase (PWD). Unlike GWD that phosphorylates preferentially the C6 position of the glucose units, PWD phosphorylates predominantly (or exclusively) the C3 position. Western-blot analysis of protoplast and chloroplast fractions from Arabidopsis leaves reveals a plastidic location of PWD. Binding of PWD to starch granules strongly increases during net starch breakdown. Transgenic Arabidopsis plants in which the expression of PWD was reduced by either RNAi or a T-DNA insertion exhibit a starch excess phenotype. Thus, in Arabidopsis leaves starch turnover requires a close collaboration of PWD and GWD.


Assuntos
Arabidopsis/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Folhas de Planta/enzimologia , Sequência de Aminoácidos , Proteínas de Arabidopsis , Sítios de Ligação , Expressão Gênica , Dados de Sequência Molecular , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptores Pareados) , Plantas Geneticamente Modificadas , Plastídeos/enzimologia , Amido/metabolismo
14.
Planta ; 216(5): 798-801, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12624767

RESUMO

For quantification of alpha-glucan, water dikinase (GWD) activity in crude extracts of plant tissues a radio-labeling assay was established that uses soluble starch and (33)P-labeled ATP as phosphate acceptor and donor, respectively. A constant rate of starch labeling was observed only if the ATP applied was labeled at the beta position. In wild-type extracts from leaves of Arabidopsis thaliana (L.) Heynh. the maximum rate of starch phosphorylation was approximately 27 pmol min(-1) (mg protein)(-1). Leaf extracts from the GWD-deficient sex1 mutants of Arabidopsis showed no significant incorporation of phosphate whereas extracts from potato (Solanum tuberosum L.) tuber expressing a GWD antisense construct exhibited less activity than the wild-type control. To our knowledge this is the first time that a quantification of the starch-phosphorylating activity has been achieved in plant crude extracts.


Assuntos
Arabidopsis/enzimologia , Extratos Vegetais/metabolismo , Solanum tuberosum/enzimologia , Amido Fosforilase/metabolismo , Amido/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Arabidopsis/metabolismo , Glucanos/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Radioisótopos de Fósforo , Extratos Vegetais/isolamento & purificação , Folhas de Planta/enzimologia
15.
Proc Natl Acad Sci U S A ; 99(10): 7166-71, 2002 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-12011472

RESUMO

To determine the enzymatic function of the starch-related R1 protein it was heterologously expressed in Escherichia coli and purified to apparent homogeneity. Incubation of the purified protein with various phosphate donor and acceptor molecules showed that R1 is capable of phosphorylating glucosyl residues of alpha-glucans at both the C-6 and the C-3 positions in a ratio similar to that occurring naturally in starch. Phosphorylation occurs in a dikinase-type reaction in which three substrates, an alpha-polyglucan, ATP, and H(2)O, are converted into three products, an alpha-polyglucan-P, AMP, and orthophosphate. The use of ATP radioactively labeled at either the gamma or beta positions showed that solely the beta phosphate is transferred to the alpha-glucan. The apparent K(m) of the R1 protein for ATP was calculated to be 0.23 microM and for amylopectin 1.7 mg x ml(-1). The velocity of in vitro phosphorylation strongly depends on the type of the glucan. Glycogen was an extremely poor substrate; however, the efficiency of phosphorylation strongly increased if the glucan chains of glycogen were elongated by phosphorylase. Mg(2+) ions proved to be essential for activity. Incubation of R1 with radioactively labeled ATP in the absence of an alpha-glucan showed that the protein phosphorylates itself with the beta, but not with the gamma phosphate. Autophosphorylation precedes the phosphate transfer to the glucan indicating a ping-pong reaction mechanism.


Assuntos
Proteínas de Arabidopsis/metabolismo , Glucanos/metabolismo , Proteínas de Transporte de Monossacarídeos , Fosfotransferases (Aceptores Pareados)/metabolismo , Solanum tuberosum/enzimologia , Trifosfato de Adenosina , Amilopectina/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/isolamento & purificação , Catálise , Cinética , Fosfatos/metabolismo , Fosforilação , Fosfotransferases (Aceptores Pareados)/genética , Fosfotransferases (Aceptores Pareados)/isolamento & purificação , Amido/metabolismo
16.
Plant Physiol ; 135(4): 2068-77, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15286293

RESUMO

The starch excess phenotype of Arabidopsis mutants defective in the starch phosphorylating enzyme glucan, water dikinase (EC 2.7.9.4) indicates that phosphorylation of starch is required for its degradation. However, the underlying mechanism has not yet been elucidated. In this study, two in vivo systems have been established that allow the analysis of phosphorylation of transitory starch during both biosynthesis in the light and degradation in darkness. First, a photoautotrophic culture of the unicellular green alga Chlamydomonas reinhardtii was used to monitor the incorporation of exogenously supplied (32)P orthophosphate into starch. Illuminated cells incorporated (32)P into starch with a constant rate during 2 h. By contrast, starch phosphorylation in darkened cells exceeded that in illuminated cells within the first 30 min, but subsequently phosphate incorporation declined. Pulse-chase experiments performed with (32)P/(31)P orthophosphate revealed a high turnover of the starch-bound phosphate esters in darkened cells but no detectable turnover in illuminated cells. Secondly, leaf starch granules were isolated from potato (Solanum tuberosum) plants grown under controlled conditions and glucan chains from the outer granule layer were released by isoamylase. Phosphorylated chains were purified and analyzed using high performance anion-exchange chromatography and matrix-assisted laser desorption/ionization mass spectrometry. Glucans released from the surface of starch granules that had been isolated from darkened leaves possessed a considerably higher degree of phosphorylation than those prepared from leaves harvested during the light period. Thus, in the unicellular alga as well as in potato leaves, net starch degradation is accompanied with an increased phosphorylation of starch.


Assuntos
Chlamydomonas/metabolismo , Amido/metabolismo , Animais , Radioisótopos de Carbono , Chlamydomonas/genética , Escuridão , Cinética , Luz , Fosforilação , Técnica de Diluição de Radioisótopos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa