Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Epilepsia ; 62(7): 1689-1700, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33997963

RESUMO

OBJECTIVE: Fetal exposure to the anticonvulsant drug valproic acid (VPA), used to treat certain types of epilepsy, increases the risk for birth defects, including neural tube defects, as well as learning difficulties and behavioral problems. Here, we investigated neurotoxic effects of VPA exposure using zebrafish as a model organism. The capacity of folic acid (FA) supplementation to rescue the VPA-induced neuronal and behavioral perturbations was also examined. METHODS: Zebrafish embryos of different transgenic lines with neuronal green fluorescent protein expression were exposed to increasing concentrations of VPA with or without FA supplementation. Fluorescence microscopy was used to visualize alterations in brain structures and neural progenitor cells, as well as motor neurons and neurite sprouting. A twitching behavioral assay was used to examine the functional consequences of VPA and FA treatment. RESULTS: In zebrafish embryos, VPA exposure caused a decrease in the midbrain size, an increase in the midline gap of the hindbrain, and perturbed neurite sprouting of secondary motor neurons, in a concentration-dependent manner. VPA exposure also decreased the fluorescence intensity of neuronal progenitor cells in early developmental stages, indicating fewer cells. Furthermore, VPA exposure significantly altered embryonic twitching activity, causing hyperactivity in dark and hypoactivity in light. Supplementation of FA rescued the VPA-induced smaller midbrain size and hindbrain midline gap defects. FA treatment also increased the number of neuronal progenitor cells in VPA-treated embryos and salvaged neurite sprouting of the secondary motor neurons. FA rescued the VPA-induced alterations in twitching activity in light but not in dark. SIGNIFICANCE: We conclude that VPA exposure induces specific neurotoxic perturbations in developing zebrafish embryos, and that FA reversed most of the identified defects. The results demonstrate that zebrafish is a promising model to study VPA-induced teratogenesis and to screen for countermeasures.


Assuntos
Anticonvulsivantes/toxicidade , Comportamento Animal/efeitos dos fármacos , Ácido Fólico/uso terapêutico , Síndromes Neurotóxicas/prevenção & controle , Síndromes Neurotóxicas/psicologia , Ácido Valproico/toxicidade , Vitaminas/uso terapêutico , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Suplementos Nutricionais , Desenvolvimento Embrionário/efeitos dos fármacos , Larva , Iluminação , Mesencéfalo/anatomia & histologia , Mesencéfalo/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Defeitos do Tubo Neural/induzido quimicamente , Neuritos/efeitos dos fármacos , Rombencéfalo/anatomia & histologia , Rombencéfalo/efeitos dos fármacos , Ácido Valproico/antagonistas & inibidores
2.
Adv Funct Mater ; 29(8)2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35586798

RESUMO

The goal of human-on-a-chip systems is to capture multi-organ complexity and predict the human response to compounds within physiologically relevant platforms. The generation and characterization of such systems is currently a focal point of research given the long-standing inadequacies of conventional techniques for predicting human outcome. Functional systems can measure and quantify key cellular mechanisms that correlate with the physiological status of a tissue, and can be used to evaluate therapeutic challenges utilizing many of the same endpoints used in animal experiments or clinical trials. Culturing multiple organ compartments in a platform creates a more physiologic environment (organ-organ communication). Here is reported a human 4-organ system composed of heart, liver, skeletal muscle and nervous system modules that maintains cellular viability and function over 28 days in serum-free conditions using a pumpless system. The integration of non-invasive electrical evaluation of neurons and cardiac cells and mechanical determination of cardiac and skeletal muscle contraction allows the monitoring of cellular function especially for chronic toxicity studies in vitro. The 28 day period is the minimum timeframe for animal studies to evaluate repeat dose toxicity. This technology could be a relevant alternative to animal testing by monitoring multi-organ function upon long term chemical exposure.

3.
Environ Toxicol ; 29(2): 207-15, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22223399

RESUMO

Many environmental endocrine disrupting compounds act as ligands for nuclear receptors. The human pregnane X receptor (hPXR), for instance, is activated by a variety of environmental ligands such as steroids, pharmaceutical drugs, pesticides, alkylphenols, polychlorinated biphenyls and polybromo diethylethers. Some of us have previously reported the occurrence of hPXR ligands in environmental samples but failed to identify them. The aim of this study was to test whether a PXR-affinity column, in which recombinant hPXR was immobilized on solid support, could help the purification of these chemicals. Using PXR ligands of different affinity (10 nM < EC50 < 10 µM), we demonstrated that the PXR-affinity preferentially column captured ligands with medium to high affinities (EC50 < 1 µM). Furthermore, by using the PXR-affinity column to analyze an environmental sample containing ERα, AhR, AR, and PXR activities, we show that (i) half of the PXR activity of the sample was due to compounds with medium to high affinity for PXR and (ii) PXR shared ligands with ERα, AR, and AhR. These findings demonstrate that the newly developed PXR-affinity column coupled to reporter cell lines represents a valuable tool for the characterization of the nature of PXR active compounds and should therefore guide and facilitate their further analysis.


Assuntos
Receptores de Esteroides/metabolismo , Poluentes Químicos da Água/toxicidade , Linhagem Celular , Linhagem Celular Tumoral , Receptor alfa de Estrogênio/metabolismo , Sedimentos Geológicos , Humanos , Ligantes , Receptor de Pregnano X , Receptores Androgênicos/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Proteínas Recombinantes/metabolismo
4.
Lab Chip ; 20(4): 749-759, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-31970354

RESUMO

Body-on-a-chip in vitro systems are a promising technology that aims to increase the predictive power of drug efficacy and toxicity in humans when compared to traditional animal models. Here, we developed a new heart-liver body-on-a-chip system with a skin surrogate to assess the toxicity of drugs that are topically administered. In order to test the utility of the system, diclofenac, ketoconazole, hydrocortisone and acetaminophen were applied topically through a synthetic skin surrogate (Strat-M membrane) and the toxicity results were compared to those of acute drug exposure from systemically applying the compounds. The heart-liver system was successful in predicting the effects for both cardiac and liver functions changes due to the compounds. The difference in the concentrations of drugs applied topically compared to systemically indicates that the barrier properties of the skin surrogate were efficient. One important advantage of this heart-liver system was the capability of showing differential effects of acute and chronic drug exposure which is necessary as part of the International Conference in Harmonisation (ICH) tri-partate guidelines. In conclusion, this work indicates a promising heart-liver body-on-a-chip system that can be used for the assessment of potential drug toxicity from dermal absorption as well as evaluate transport dynamics through the skin in the same system.


Assuntos
Dispositivos Lab-On-A-Chip , Preparações Farmacêuticas , Animais , Humanos , Fígado/metabolismo , Preparações Farmacêuticas/metabolismo , Pele/metabolismo , Absorção Cutânea
5.
Environ Int ; 34(3): 318-29, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17481732

RESUMO

Fully brominated diphenyl ether, decabromodiphenyl ether (DBDE), is one of the most widely used brominated flame retardants worldwide. Little data is available about the metabolic fate of DBDE in animal models and nothing at all about the extent of foetal exposure. In this work, pregnant Wistar rats were force-fed with 99.8% pure [14C]-DBDE over 96 h at a late stage of gestation (days 16 to 19). More than 19% of the administered dose was recovered in tissues and carcasses, demonstrating efficient absorption of DBDE despite its high molecular weight and low solubility. The highest concentrations of DBDE residues were found in endocrine glands (adrenals, ovaries) and in the liver, with lower values recorded for fat. In all tissue extracts, most of the radioactivity was associated with unchanged DBDE. The use of high-grade purity [14C]-DBDE allowed quantification of several metabolites present both in maternal tissues and in foetuses. These biotransformation products accounted for 9-27% of the extractable radioactivity in tissues and 14% of that in foetuses. Three nona-BDEs and one octa-BDE were identified by LC-APPI/MS. The unequivocal characterisation of a hydroxylated octa-BDE isolated from liver was confirmed by NMR. In rat, the main metabolic pathways of DBDE are debromination and oxidation. DBDE, and very likely most of its metabolites, are able to cross the placental barrier in rat. Metabolic profiles, obtained in vivo for the first time, demonstrated the presence of DBDE and major biotransformation products in endocrine glands as well as in foetuses. The biological activity of these metabolites still needs to be assessed in order to better understand the potential toxicity of DBDE.


Assuntos
Éteres Fenílicos/metabolismo , Bifenil Polibromatos/metabolismo , Tecido Adiposo/química , Animais , Biotransformação , Radioisótopos de Carbono/metabolismo , Cromatografia Líquida , Glândulas Endócrinas/química , Feminino , Feto/química , Retardadores de Chama/metabolismo , Éteres Difenil Halogenados , Fígado/química , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Estrutura Molecular , Oxirredução , Gravidez , Ratos , Ratos Wistar , Coloração e Rotulagem
6.
Artigo em Inglês | MEDLINE | ID: mdl-30319551

RESUMO

The model xeno-estrogen bisphenol A (BPA) has been extensively studied over the past two decades, contributing to major advances in the field of endocrine disrupting chemicals research. Besides its well documented adverse effects on reproduction and development observed in rodents, latest studies strongly suggest that BPA disrupts several endogenous metabolic pathways, with suspected steatogenic and obesogenic effects. BPA's adverse effects on reproduction are attributed to its ability to activate estrogen receptors (ERs), but its effects on metabolism and its mechanism(s) of action at low doses are so far only marginally understood. Metabolomics based approaches are increasingly used in toxicology to investigate the biological changes induced by model toxicants and chemical mixtures, to identify markers of toxicity and biological effects. In this study, we used proton nuclear magnetic resonance (1H-NMR) based untargeted metabolite profiling, followed by multivariate statistics and computational analysis of metabolic networks to examine the metabolic modulation induced in human hepatic cells (HepG2) by an exposure to low and very low doses of BPA (10-6M, 10-9M, and 10-12M), vs. the female reference hormone 17ß-estradiol (E2, 10-9M, 10-12M, and 10-15M). Metabolomic analysis combined to metabolic network reconstruction highlighted different mechanisms at lower doses of exposure. At the highest dose, our results evidence that BPA shares with E2 the capability to modulate several major metabolic routes that ensure cellular functions and detoxification processes, although the effects of the model xeno-estrogen and of the natural hormone can still be distinguished.

7.
Lab Chip ; 18(17): 2510-2522, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-29992215

RESUMO

Drug development is currently hampered by the inability of animal experiments to accurately predict human response. While emerging organ on chip technology offers to reduce risk using microfluidic models of human tissues, the technology still mostly relies on end-point assays and biomarker measurements to assess tissue damage resulting in limited mechanistic information and difficulties to detect adverse effects occurring below the threshold of cellular damage. Here we present a sensor-integrated liver on chip array in which oxygen is monitored using two-frequency phase modulation of tissue-embedded microprobes, while glucose, lactate and temperature are measured in real time using microfluidic electrochemical sensors. Our microphysiological platform permits the calculation of dynamic changes in metabolic fluxes around central carbon metabolism, producing a unique metabolic fingerprint of the liver's response to stimuli. Using our platform, we studied the dynamics of human liver response to the epilepsy drug Valproate (Depakine™) and the antiretroviral medication Stavudine (Zerit™). Using E6/E7LOW hepatocytes, we show TC50 of 2.5 and 0.8 mM, respectively, coupled with a significant induction of steatosis in 2D and 3D cultures. Time to onset analysis showed slow progressive damage starting only 15-20 hours post-exposure. However, flux analysis showed a rapid disruption of metabolic homeostasis occurring below the threshold of cellular damage. While Valproate exposure led to a sustained 15% increase in lipogenesis followed by mitochondrial stress, Stavudine exposure showed only a transient increase in lipogenesis suggesting disruption of ß-oxidation. Our data demonstrates the importance of tracking metabolic stress as a predictor of clinical outcome.


Assuntos
Dispositivos Lab-On-A-Chip , Análise do Fluxo Metabólico/instrumentação , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/metabolismo , Linhagem Celular , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Estavudina/efeitos adversos , Ácido Valproico/efeitos adversos
8.
Biomaterials ; 182: 176-190, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30130706

RESUMO

Regulation of cosmetic testing and poor predictivity of preclinical drug studies has spurred efforts to develop new methods for systemic toxicity. Current in vitro assays do not fully represent physiology, often lacking xenobiotic metabolism. Functional human multi-organ systems containing iPSC derived cardiomyocytes and primary hepatocytes were maintained under flow using a low-volume pumpless system in a serum-free medium. The functional readouts for contractile force and electrical conductivity enabled the non-invasive study of cardiac function. The presence of the hepatocytes in the system induced cardiotoxic effects from cyclophosphamide and reduced them for terfenadine due to drug metabolism, as expected from each compound's pharmacology. A computational fluid dynamics simulation enabled the prediction of terfenadine-fexofenadine pharmacokinetics, which was validated by HPLC-MS. This in vitro platform recapitulates primary aspects of the in vivo crosstalk between heart and liver and enables pharmacological studies, involving both organs in a single in vitro platform. The system enables non-invasive readouts of cardiotoxicity of drugs and their metabolites. Hepatotoxicity can also be evaluated by biomarker analysis and change in metabolic function. Integration of metabolic function in toxicology models can improve adverse effects prediction in preclinical studies and this system could also be used for chronic studies as well.


Assuntos
Ciclofosfamida/toxicidade , Hepatócitos/efeitos dos fármacos , Antagonistas não Sedativos dos Receptores H1 da Histamina/toxicidade , Imunossupressores/toxicidade , Dispositivos Lab-On-A-Chip , Miócitos Cardíacos/efeitos dos fármacos , Terfenadina/toxicidade , Cardiotoxicidade/etiologia , Linhagem Celular , Células Cultivadas , Técnicas de Cocultura/instrumentação , Ciclofosfamida/metabolismo , Avaliação Pré-Clínica de Medicamentos/instrumentação , Desenho de Equipamento , Hepatócitos/citologia , Hepatócitos/metabolismo , Antagonistas não Sedativos dos Receptores H1 da Histamina/metabolismo , Humanos , Imunossupressores/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Terfenadina/metabolismo
9.
Chemosphere ; 64(2): 318-27, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16473389

RESUMO

The comparative in vitro metabolism of the flame retardant tetrabromo-bisphenol A was studied in rat and human using a [(14)C]-radio-labelled molecule. Tetrabromo-bisphenol A is metabolised into the corresponding glucuronide (liver S9 fractions) and several other metabolites produced by cytochrome P450 dependent pathways (liver microsomes and liver S9 fractions). No major qualitative differences were observed between rat and human, regardless of the selected concentration, within the 20-200 microM range. Tetrabromo-bisphenol A undergoes an oxidative cleavage near the central carbon of the molecule, that leads to the production of hydroxylated dibromo-phenol, hydroxylated dibromo-isopropyl-phenol and glutathione conjugated dibromo-isopropyl-phenol. The main metabolites of tetrabromo-bisphenol A are two molecules of lower polarity than the parent compound, characterised as a hexa-brominated compound with three aromatic rings and a hepta-brominated dimer-like compound, respectively. Both structures, as well as the lower molecular weight metabolites resulting from the breakdown of the molecule, suggest the occurrence of chemically reactive intermediates formed following a first step oxidation of tetrabromo-bisphenol A.


Assuntos
Retardadores de Chama/metabolismo , Fígado/citologia , Bifenil Polibromatos/metabolismo , Animais , Biotransformação , Cromatografia Líquida de Alta Pressão , Feminino , Retardadores de Chama/farmacocinética , Humanos , Técnicas In Vitro , Fígado/metabolismo , Masculino , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Bifenil Polibromatos/farmacocinética , Ratos , Ratos Wistar , Frações Subcelulares/metabolismo
10.
Mol Cell Endocrinol ; 419: 29-43, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26427652

RESUMO

The Liver X Receptors (LXRs) play important roles in multiple metabolic pathways, including fatty acid, cholesterol, carbohydrate and energy metabolism. To expand the knowledge of the functions of LXR signaling during embryonic development, we performed a whole-genome microarray analysis of Lxr target genes in zebrafish larvae treated with either one of the synthetic LXR ligands T0901317 or GW3965. Assessment of the biological processes enriched by differentially expressed genes revealed a prime role for Lxr in regulating lipid metabolic processes, similarly to the function of LXR in mammals. In addition, exposure to the Lxr ligands induced changes in expression of genes in the neural retina and lens of the zebrafish eye, including the photoreceptor guanylate cyclase activators and lens gamma crystallins, suggesting a potential novel role for Lxr in modulating the transcription of genes associated with visual function in zebrafish. The regulation of expression of metabolic genes was phenotypically reflected in an increased absorption of yolk in the zebrafish larvae, and changes in the expression of genes involved in visual perception were associated with morphological alterations in the retina and lens of the developing zebrafish eye. The regulation of expression of both lipid metabolic and eye specific genes was sustained in 1 month old fish. The transcriptional networks demonstrated several conserved effects of LXR activation between zebrafish and mammals, and also identified potential novel functions of Lxr, supporting zebrafish as a promising model for investigating the role of Lxr during development.


Assuntos
Metabolismo dos Lipídeos , Receptores Nucleares Órfãos/metabolismo , Percepção Visual/genética , Peixe-Zebra/crescimento & desenvolvimento , Animais , Benzoatos/farmacologia , Benzilaminas/farmacologia , Linhagem Celular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Hidrocarbonetos Fluorados/farmacologia , Cristalino/efeitos dos fármacos , Cristalino/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Receptores X do Fígado , Análise de Sequência com Séries de Oligonucleotídeos , Receptores Nucleares Órfãos/genética , Neurônios Retinianos/efeitos dos fármacos , Neurônios Retinianos/metabolismo , Sulfonamidas/farmacologia , Percepção Visual/efeitos dos fármacos , Peixe-Zebra/genética
11.
J Mass Spectrom ; 40(3): 342-9, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15674862

RESUMO

Fatty acids have for many years been characterized by mass spectrometry using electron ionization after chemical derivatization. When fatty acids are ionized using desorption/ionization methods such as electrospray ionization or fast atom bombardment, structural information is usually obtained through high-energy collision-induced dissociation (CID) using sector instruments. It has been shown that copper displays very interesting properties in the gas phase during CID. In this study, the reactivity of saturated and unsaturated fatty acid-copper [M-H+Cu(II)]+ complex and the role of the copper ion in promoting fragmentations were investigated under low-energy collisional activation conditions. The decomposition of these species in an ion trap instrument led to diagnostic ion series that reflect C--C bond cleavage, which involves Cu(II) reduction followed by the release of an alkyl radical. It was demonstrated that in this way the localization of one or two homoconjugated double bonds is possible using low-energy CID. Moreover, the distinction of cis and trans isomers is possible through characteristic product ions related to a specific loss of CO2. When these experiments are repeated using a triple-quadrupole instrument with argon as collision gas, a different behavior is observed as in this case, in addition to the product ion distributions observed in the ion trap, other distributions are observed that reflect the influence of the different kinetic shifts and the occurrence of consecutive decompositions. Different examples are presented with various saturated and unsaturated fatty acid chains. Mechanisms are proposed in order to rationalize the experimental observations.


Assuntos
Cobre/química , Ácidos Graxos/química , Cátions/química , Conformação Molecular , Isótopos de Oxigênio , Espectrometria de Massas por Ionização por Electrospray , Ácidos Esteáricos/química
12.
J Chromatogr A ; 1082(1): 98-109, 2005 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-16038199

RESUMO

Atmospheric pressure photo ionisation has been evaluated for the analysis of brominated flame retardants and their related degradation products by LC-MS. Degradation mixtures obtained from the photochemical degradation of tetrabromobisphenol A and decabromodiphenylether were used as model systems for the assessment of the developed methodology. Negative ion mode gave best results for TBBPA and its degradation compounds. [M - H]- ions were formed without the need of using a doping agent. MS and MS/MS experiments allowed the structural identification of new TBBPA "polymeric" degradation compounds formed by attachment of TBBPA moieties and/or their respective cleavage products. In the case of polybromodiphenylethers, the positive mode provided M*+ ions and gave better results for congeners ranging from mono- to pentabromodiphenylethers whereas for higher bromination degrees, the negative ion mode (providing [M - Br + O]- ions) was best suited. Under both positive and negative ionisation modes, the use of toluene as doping agent gave better results. Liquid chromatography-mass spectrometry by means of atmospheric pressure photo-ionisation was applied to the analysis of aromatic brominated flame retardants and their degradation products. This methodology proved to be particularly useful, for the characterisation and structural identification of some compounds which are not amenable to GC-MS, especially in the case of apolar "polymeric" degradation products of tetrabromobisphenol A investigated in this work.


Assuntos
Cromatografia Líquida/métodos , Retardadores de Chama/análise , Éteres Fenílicos/análise , Bifenil Polibromatos/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Éteres Difenil Halogenados , Espectrometria de Massas/métodos
13.
Toxicol Sci ; 138(1): 21-35, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24284790

RESUMO

Endocrine-disrupting chemicals (EDC) are abundant in our environment. A number of EDCs, including bisphenol A (BPA) can bind to the estrogen receptors (ER), ERα and ERß, and may contribute to estrogen-linked diseases such as breast cancer. Early exposure is of particular concern; many EDCs cross the placenta and infants have measurable levels of, eg, BPA. In addition, infants are frequently fed soy-based formula (SF) that contains phytoestrogens. Effects of combined exposure to xeno- and phytoestrogens are poorly studied. Here, we extensively compared to what extent BPA, genistein, and an extract of infant SF mimic estrogen-induced gene transcription and cell proliferation. We investigated ligand-specific effects on ER activation in HeLa-ERα and ERß reporter cells; on proliferation, genome-wide gene regulation and non-ER-mediated effects in MCF7 breast cancer cells; and how coexposure influenced these effects. The biological relevance was explored using enrichment analyses of differentially regulated genes and clustering with clinical breast cancer profiles. We demonstrate that coexposure to BPA and genistein, or SF, results in increased functional and transcriptional estrogenic effects. Using statistical modeling, we determine that BPA and phytoestrogens act in an additive manner. The proliferative and transcriptional effects of the tested compounds mimic those of 17ß-estradiol, and are abolished by cotreatment with an ER antagonist. Gene expression profiles induced by each compound clustered with poor prognosis breast cancer, indicating that exposure may adversely affect breast cancer prognosis. This study accentuates that coexposure to BPA and soy-based phytoestrogens results in additive estrogenic effects, and may contribute to estrogen-linked diseases, including breast cancer.


Assuntos
Compostos Benzidrílicos/toxicidade , Disruptores Endócrinos/toxicidade , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Fenóis/toxicidade , Fitoestrógenos/toxicidade , Ativação Transcricional/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Disruptores Endócrinos/isolamento & purificação , Receptor alfa de Estrogênio/genética , Receptor beta de Estrogênio/genética , Genes Reporter , Genisteína/isolamento & purificação , Genisteína/toxicidade , Células HeLa , Humanos , Lactente , Fórmulas Infantis/química , Isoflavonas/isolamento & purificação , Isoflavonas/toxicidade , Células MCF-7 , Fitoestrógenos/isolamento & purificação , Ligação Proteica , Leite de Soja/química , Transfecção
14.
Toxicol Sci ; 139(1): 48-58, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24591153

RESUMO

Obesity has increased dramatically over the past decades, reaching epidemic proportions. The reasons are likely multifactorial. One of the suggested causes is the accelerated exposure to obesity-inducing chemicals (obesogens). However, out of the tens of thousands of industrial chemicals humans are exposed to, very few have been tested for their obesogenic potential, mostly due to the limited availability of appropriate in vivo screening models. In this study, we investigated whether two commonly used flame retardants, the halogenated bisphenol-A (BPA) analogs tetrabromobisphenol-A (TBBPA) and tetrachlorobisphenol-A (TCBPA), could act as obesogens using zebrafish larvae as an in vivo animal model. The effect of embryonic exposure to these chemicals on lipid accumulation was analyzed by Oil Red-O staining, and correlated to their capacity to activate human and zebrafish peroxisome proliferator-activated receptor gamma (PPARγ) in zebrafish and in reporter cell lines. Then, the metabolic fate of TBBPA and TCBPA in zebrafish larvae was analyzed by high-performance liquid chromatography (HPLC) . TBBPA and TCBPA were readily taken up by the fish embryo and both compounds were biotransformed to sulfate-conjugated metabolites. Both halogenated-BPAs, as well as TBBPA-sulfate induced lipid accumulation in zebrafish larvae. TBBPA and TCBPA also induced late-onset weight gain in juvenile zebrafish. These effects correlated to their capacity to act as zebrafish PPARγ agonists. Screening of chemicals for inherent obesogenic capacities through the zebrafish lipid accumulation model could facilitate prioritizing chemicals for further investigations in rodents, and ultimately, help protect humans from exposure to environmental obesogens.


Assuntos
Compostos Benzidrílicos/toxicidade , Halogênios/química , Larva/efeitos dos fármacos , Obesidade/induzido quimicamente , Fenóis/toxicidade , Peixe-Zebra/crescimento & desenvolvimento , Animais , Compostos Benzidrílicos/química , Compostos Benzidrílicos/farmacocinética , Cromatografia Líquida de Alta Pressão , Larva/metabolismo , Metabolismo dos Lipídeos , Fenóis/química , Fenóis/farmacocinética , Aumento de Peso/efeitos dos fármacos , Peixe-Zebra/embriologia
15.
PLoS One ; 8(3): e58591, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23484039

RESUMO

Colorectal neoplasia is the third most common cancer worldwide. Environmental factors such as diet are known to be involved in the etiology of this cancer. Several epidemiological studies have suggested that specific neo-formed mutagenic compounds related to meat consumption are an underlying factor involved in the association between diet and colorectal cancer. Heterocyclic amines (HCAs) and polycyclic aromatic hydrocarbons (PAHs) are known mutagens and possible human carcinogens formed at the same time in meat during cooking processes. We studied the genotoxicity of the model PAH benzo(a)pyrene (B(a)P) and HCA 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), alone or in mixture, using the mouse intestinal cell line Apc(Min/+), mimicking the early step of colorectal carcinogenesis, and control Apc(+/+) cells. The genotoxicity of B(a)P and PhIP was investigated using both cell lines, through the quantification of B(a)P and PhIP derived DNA adducts, as well as the use of a genotoxic assay based on histone H2AX phosphorylation quantification. Our results demonstrate that heterozygous Apc mutated cells are more effective to metabolize B(a)P. We also established in different experiments that PhIP and B(a)P were more genotoxic on Apc (Min/+) cells compared to Apc (+/+) . Moreover when tested in mixture, we observed a combined genotoxicity of B(a)P and PhIP on the two cell lines, with an increase of PhIP derived DNA adducts in the presence of B(a)P. Because of their genotoxic effects observed on heterozygous Apc mutated cells and their possible combined genotoxic effects, both B(a)P and PhIP, taken together, could be implicated in the observed association between meat consumption and colorectal cancer.


Assuntos
Benzo(a)pireno/toxicidade , Neoplasias Colorretais/induzido quimicamente , Imidazóis/toxicidade , Carne/efeitos adversos , Animais , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Adutos de DNA/efeitos dos fármacos , Histonas/efeitos dos fármacos , Histonas/metabolismo , Humanos , Mucosa Intestinal/citologia , Carne/análise , Camundongos , Testes de Mutagenicidade , Fosforilação/efeitos dos fármacos , Espectrometria de Massas em Tandem
16.
PLoS One ; 8(11): e79020, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24223173

RESUMO

Estrogen signaling is important for vertebrate embryonic development. Here we have used zebrafish (Danio rerio) as a vertebrate model to analyze estrogen signaling during development. Zebrafish embryos were exposed to 1 µM 17ß-estradiol (E2) or vehicle from 3 hours to 4 days post fertilization (dpf), harvested at 1, 2, 3 and 4 dpf, and subjected to RNA extraction for transcriptome analysis using microarrays. Differentially expressed genes by E2-treatment were analyzed with hierarchical clustering followed by biological process and tissue enrichment analysis. Markedly distinct sets of genes were up and down-regulated by E2 at the four different time points. Among these genes, only the well-known estrogenic marker vtg1 was co-regulated at all time points. Despite this, the biological functional categories targeted by E2 were relatively similar throughout zebrafish development. According to knowledge-based tissue enrichment, estrogen responsive genes were clustered mainly in the liver, pancreas and brain. This was in line with the developmental dynamics of estrogen-target tissues that were visualized using transgenic zebrafish containing estrogen responsive elements driving the expression of GFP (Tg(5xERE:GFP)). Finally, the identified embryonic estrogen-responsive genes were compared to already published estrogen-responsive genes identified in male adult zebrafish (Gene Expression Omnibus database). The expressions of a few genes were co-regulated by E2 in both embryonic and adult zebrafish. These could potentially be used as estrogenic biomarkers for exposure to estrogens or estrogenic endocrine disruptors in zebrafish. In conclusion, our data suggests that estrogen effects on early embryonic zebrafish development are stage- and tissue- specific.


Assuntos
Estradiol/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Análise por Conglomerados , Relação Dose-Resposta a Droga , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Receptor alfa de Estrogênio/genética , Estrogênios/farmacologia , Ontologia Genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hibridização In Situ , Masculino , Microscopia de Fluorescência , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Componente Principal , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Peixe-Zebra/embriologia , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética
17.
Toxicol Sci ; 125(2): 359-67, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22086976

RESUMO

The flame retardant tetrabromobisphenol A (TBBPA) is a high production flame retardant that interferes with thyroid hormone (TH) signaling. Despite its rapid metabolism in mammals, TBBPA is found in significant amounts in different tissues. Such findings highlight first a need to better understand the effects of TBBPA and its metabolites and second the need to develop models to address these questions experimentally. We used Xenopus laevis tadpoles to follow radiolabeled (14)C-TBBPA uptake and metabolism. Extensive and rapid uptake of radioactivity was observed, tadpoles metabolizing > 94% of (14)C-TBBPA within 8 h. Four metabolites were identified in water and tadpole extracts: TBBPA-glucuronide, TBBPA-glucuronide-sulfate, TBBPA-sulfate, and TBBPA-disulfate. These metabolites are identical to the TBBPA conjugates characterized in mammals, including humans. Most radioactivity (> 75%) was associated with sulfated conjugates. The antithyroid effects of TBBPA and the metabolites were compared using two in vivo measures: tadpole morphology and an in vivo tadpole TH reporter gene assay. Only TBBPA, and not the sulfated metabolites, disrupted thyroid signaling. Moreover, TBBPA treatment did not affect expression of phase II enzymes involved in TH metabolism, suggesting that the antithyroid effects of TBBPA are not due to indirect effects on TH metabolism. Finally, we show that only the parent TBBPA inhibits T3-induced transactivation in cells expressing human, zebrafish, or X. laevis TH receptor, TRα. We conclude, first, that perturbation of thyroid signaling by TBBPA is likely due to rapid direct action of the parent compound, and second, that Xenopus is an excellent vertebrate model for biotransformation studies, displaying homologous pathways to mammals.


Assuntos
Antitireóideos/metabolismo , Disruptores Endócrinos/metabolismo , Retardadores de Chama/metabolismo , Bifenil Polibromatos/metabolismo , Testes de Toxicidade/métodos , Xenopus laevis/metabolismo , Animais , Antitireóideos/toxicidade , Ligação Competitiva , Biotransformação , Cromatografia Líquida , Relação Dose-Resposta a Droga , Disruptores Endócrinos/toxicidade , Retardadores de Chama/toxicidade , Genes Reporter , Glucuronídeos/metabolismo , Humanos , Cinética , Larva/efeitos dos fármacos , Larva/metabolismo , Bifenil Polibromatos/toxicidade , Espectrometria de Massas por Ionização por Electrospray , Sulfatos/metabolismo , Receptores alfa dos Hormônios Tireóideos/efeitos dos fármacos , Receptores alfa dos Hormônios Tireóideos/genética , Receptores alfa dos Hormônios Tireóideos/metabolismo , Ativação Transcricional/efeitos dos fármacos , Transfecção , Tri-Iodotironina/metabolismo , Xenopus laevis/embriologia , Xenopus laevis/genética , Proteínas de Peixe-Zebra/efeitos dos fármacos , Proteínas de Peixe-Zebra/genética
18.
Toxicol Sci ; 122(2): 372-82, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21622942

RESUMO

The capability of the flame retardants tetrabromobisphenol A (TBBPA) and tetrachlorobisphenol A (TCBPA) to activate peroxysome proliferator-activated receptors (PPARs) α, ß, and γ and estrogen receptors (ERs) α and ß has been recently investigated, but the activity of their biotransformation products and of their lower molecular weight analogues formed in the environment remains unexplored. The aim of this study was to investigate the relationship between the degree of halogenation of BPA analogues and their affinity and activity towards human PPARγ and ERs and to characterize active metabolites of major marketed halogenated bisphenols. The biological activity of all compounds was studied using reporter cell lines expressing these nuclear receptors (NRs). We used NR-based affinity columns to rapidly evaluate the binding affinity of halogenated bisphenols for PPARγ and ERs and to trap active metabolites of TBBPA and TCBPA formed in HepG2 cells. The agonistic potential of BPA analogs highly depends on their halogenation degree: the bulkier halogenated BPA analogs, the greater their capability to activate PPARγ. In addition, PPARγ-based affinity column, HGELN-PPARγ reporter cell line and crystallographic analysis clearly demonstrate that the sulfation pathway, usually considered as a detoxification process, leads for TBBPA and TCBPA, to the formation of sulfate conjugates which possess a residual PPARγ-binding activity. Our results highlight the effectiveness NR-based affinity columns to trap and characterize biologically active compounds from complex matrices. Polyhalogenated bisphenols, but also some of their metabolites, are potential disrupters of PPARγ activity.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Retardadores de Chama/metabolismo , PPAR gama/metabolismo , Fenóis/metabolismo , Compostos Benzidrílicos , Clorofenóis/metabolismo , Cromatografia Líquida de Alta Pressão , Receptor alfa de Estrogênio/genética , Receptor beta de Estrogênio/genética , Halogenação , Células Hep G2 , Humanos , Ligantes , Espectrometria de Massas , Modelos Moleculares , PPAR gama/genética , Bifenil Polibromatos/metabolismo , Conformação Proteica , Receptores Citoplasmáticos e Nucleares/metabolismo
19.
Environ Health Perspect ; 119(9): 1227-32, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21561829

RESUMO

BACKGROUND: The occurrence of halogenated analogs of the xenoestrogen bisphenol A (BPA) has been recently demonstrated both in environmental and human samples. These analogs include brominated [e.g., tetrabromobisphenol A (TBBPA)] and chlorinated [e.g., tetrachlorobisphenol A (TCBPA)] bisphenols, which are both flame retardants. Because of their structural homology with BPA, such chemicals are candidate endocrine disruptors. However, their possible target(s) within the nuclear hormone receptor superfamily has remained unknown. OBJECTIVES: We investigated whether BPA and its halogenated analogs could be ligands of estrogen receptors (ERs) and peroxisome proliferator-activated receptors (PPARs) and act as endocrine-disrupting chemicals. METHODS: We studied the activity of compounds using reporter cell lines expressing ERs and PPARs. We measured the binding affinities to PPARγ by competitive binding assays with [3H]-rosiglitazone and investigated the impact of TBBPA and TCBPA on adipocyte differentiation using NIH3T3-L1 cells. Finally, we determined the binding mode of halogenated BPAs to PPARγ by X-ray crystallography. RESULTS: We observed that TBBPA and TCBPA are human, zebrafish, and Xenopus PPARγ ligands and determined the mechanism by which these chemicals bind to and activate PPARγ. We also found evidence that activation of ERα, ERß, and PPARγ depends on the degree of halogenation in BPA analogs. We observed that the bulkier brominated BPA analogs, the greater their capability to activate PPARγ and the weaker their estrogenic potential. CONCLUSIONS: Our results strongly suggest that polyhalogenated bisphenols could function as obesogens by acting as agonists to disrupt physiological functions regulated by human or animal PPARγ.


Assuntos
Clorofenóis/farmacologia , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Estrogênios não Esteroides/farmacologia , Retardadores de Chama/farmacologia , PPAR alfa/metabolismo , Bifenil Polibromatos/farmacologia , Animais , Ligação Competitiva , Linhagem Celular , Cristalografia por Raios X , Disruptores Endócrinos/farmacologia , Receptor alfa de Estrogênio/genética , Receptor beta de Estrogênio/genética , Humanos , Ligantes , PPAR alfa/genética , PPAR delta/genética , PPAR delta/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Xenopus/genética , Xenopus/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-22256217

RESUMO

Biological inferences about the toxicity of chemicals reached during experiments on the zebrafish Dharma embryo can be greatly affected by the analysis of the time-lapse microscopy images depicting the embryo. Among the stages of image analysis, automatic and accurate segmentation of the Dharma embryo is the most crucial and challenging. In this paper, an accurate and automatic segmentation approach for the segmentation of the Dharma embryo data obtained by fluorescent time-lapse microscopy is proposed. Experiments performed in four stacks of 3D images over time have shown promising results.


Assuntos
Embrião não Mamífero/anatomia & histologia , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos , Imagem com Lapso de Tempo/métodos , Peixe-Zebra/embriologia , Animais , Automação , Cromossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa