Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Allergy ; 5: 1437523, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39183976

RESUMO

IgE antibodies against the mammalian oligosaccharide allergen galactose-α-1,3-galactose (αGal) can result in a severe allergic disease known as alpha-gal syndrome (AGS). This syndrome, acquired by tick bites that cause αGal sensitization, leads to allergic reactions after ingestion of non-primate mammalian meat and mammalian-derived products that contain αGal. Allergen-specific immunotherapies for this tickborne allergic syndrome are understudied, as are the immune mechanisms of allergic desensitization that induce clinical tolerance to αGal. Here, we reveal that prophylactic administration of αGal glycoprotein-containing nanoparticles to mice prior to tick protein-induced αGal IgE sensitization blunts the production of Th2 cytokines IL-4, IL-5, and IL-13 in an αGal-dependent manner. Furthermore, these effects correlated with suppressed production of αGal-specific IgE and hypersensitivity reactions, as measured by reduced basophil activation and histamine release and the systemic release of mast cell protease-1 (MCPT-1). Therapeutic administration of two doses of αGal-containing nanoparticles to mice sensitized to αGal had partial efficacy by reducing the Th2 cytokine production, αGal-specific IgE production, and MCPT-1 release without reducing basophil activation or histamine release. These data identify nanoparticles carrying encapsulated αGal glycoprotein as a potential strategy for augmenting αGal-specific immune tolerance and reveal diverse mechanisms by which αGal nanoparticles modify immune responses for established αGal-specific IgE-mediated allergic reactions.

2.
Nat Commun ; 10(1): 4456, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31575859

RESUMO

Fertilization is essential for species survival. Although Izumo1 and Juno are critical for initial interaction between gametes, additional molecules necessary for sperm:egg fusion on both the sperm and the oocyte remain to be defined. Here, we show that phosphatidylserine (PtdSer) is exposed on the head region of viable and motile sperm, with PtdSer exposure progressively increasing during sperm transit through the epididymis. Functionally, masking phosphatidylserine on sperm via three different approaches inhibits fertilization. On the oocyte, phosphatidylserine recognition receptors BAI1, CD36, Tim-4, and Mer-TK contribute to fertilization. Further, oocytes lacking the cytoplasmic ELMO1, or functional disruption of RAC1 (both of which signal downstream of BAI1/BAI3), also affect sperm entry into oocytes. Intriguingly, mammalian sperm could fuse with skeletal myoblasts, requiring PtdSer on sperm and BAI1/3, ELMO2, RAC1 in myoblasts. Collectively, these data identify phosphatidylserine on viable sperm and PtdSer recognition receptors on oocytes as key players in sperm:egg fusion.


Assuntos
Oócitos/metabolismo , Fagócitos/metabolismo , Fosfatidilserinas/metabolismo , Interações Espermatozoide-Óvulo/fisiologia , Espermatozoides/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Angiogênicas/metabolismo , Animais , Antígenos CD36/metabolismo , Proteínas do Citoesqueleto/metabolismo , Epididimo , Feminino , Humanos , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Mioblastos Esqueléticos , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeos/metabolismo , Fosfatidilserinas/genética , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , c-Mer Tirosina Quinase/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
3.
J Clin Invest ; 123(8): 3614-23, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23863711

RESUMO

The unique sensitivity of early red cell progenitors to iron deprivation, known as the erythroid iron restriction response, serves as a basis for human anemias globally. This response impairs erythropoietin-driven erythropoiesis and underlies erythropoietic repression in iron deficiency anemia. Mechanistically, the erythroid iron restriction response results from inactivation of aconitase enzymes and can be suppressed by providing the aconitase product isocitrate. Recent studies have implicated the erythroid iron restriction response in anemia of chronic disease and inflammation (ACDI), offering new therapeutic avenues for a major clinical problem; however, inflammatory signals may also directly repress erythropoiesis in ACDI. Here, we show that suppression of the erythroid iron restriction response by isocitrate administration corrected anemia and erythropoietic defects in rats with ACDI. In vitro studies demonstrated that erythroid repression by inflammatory signaling is potently modulated by the erythroid iron restriction response in a kinase-dependent pathway involving induction of the erythroid-inhibitory transcription factor PU.1. These results reveal the integration of iron and inflammatory inputs in a therapeutically tractable erythropoietic regulatory circuit.


Assuntos
Anemia/tratamento farmacológico , Células Eritroides/efeitos dos fármacos , Eritropoese/efeitos dos fármacos , Deficiências de Ferro , Isocitratos/farmacologia , Aconitato Hidratase/metabolismo , Anemia/metabolismo , Anemia/patologia , Animais , Células Cultivadas , Células Eritroides/enzimologia , Feminino , Humanos , Interferon gama/fisiologia , Isocitratos/uso terapêutico , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Ratos , Ratos Endogâmicos Lew , Transdução de Sinais , Transativadores/metabolismo , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa