Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
FASEB J ; 36(5): e22320, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35470501

RESUMO

The cytokine-inducible SH2 domain containing protein (CISH) is the founding member of the suppressor of cytokine signaling (SOCS) family of negative feedback regulators and has been shown to be a physiological regulator of signaling in immune cells. This study sought to investigate novel functions for CISH outside of the immune system. Mice deficient in CISH were generated and analyzed using a range of metabolic and other parameters, including in response to a high fat diet and leptin administration. CISH knockout mice possessed decreased body fat and showed resistance to diet-induced obesity. This was associated with reduced food intake, but unaltered energy expenditure and microbiota composition. CISH ablation resulted in reduced basal expression of the orexigenic Agrp gene in the arcuate nucleus (ARC) region of the brain. Cish was basally expressed in the ARC, with evidence of co-expression with the leptin receptor (Lepr) gene in Agrp-positive neurons. CISH-deficient mice also showed enhanced leptin responsiveness, although Cish expression was not itself modulated by leptin. CISH-deficient mice additionally exhibited improved insulin sensitivity on a high-fat diet, but not glucose tolerance despite reduced body weight. These data identify CISH as an important regulator of homeostasis through impacts on appetite control, mediated at least in part by negative regulation of the anorexigenic effects of leptin, and impacts on glucose metabolism.


Assuntos
Adiposidade , Leptina , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Animais , Citocinas/metabolismo , Ingestão de Alimentos , Glucose/metabolismo , Leptina/metabolismo , Camundongos , Obesidade/genética , Obesidade/metabolismo , Proteínas Supressoras da Sinalização de Citocina , Domínios de Homologia de src
2.
BMC Med Educ ; 22(1): 700, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36195862

RESUMO

BACKGROUND: Given the importance of the selection process, many medical schools are reviewing their selection criteria. The traditional pathway for post-graduate medicine has been from science-based undergraduate degrees, however some programs are expanding their criteria. In this study we investigated academic success across all years and themes of the Deakin University medical degree, based on the type of degree undertaken prior to admission. We evaluated whether the traditional pathway of biomedical science into medicine should remain the undergraduate degree of choice, or whether other disciplines should be encouraged. METHODS: Data from 1159 students entering the degree from 2008 to 2016 was collected including undergraduate degree, grade point average (GPA), Graduate Medical Schools Admission Test (GAMSAT) score and academic outcomes during the 4 years of the degree. Z-scores were calculated for each assessment within each cohort and analysed using a one sample t-test to determine if they differed from the cohort average. Z-scores between groups were analysed by 1-way ANOVA with LSD post-hoc analysis correcting for multiple comparisons. RESULTS: The majority of students had Science (34.3%) or Biomedical Science (31.0%) backgrounds. 27.9% of students had a Health-related undergraduate degree with smaller numbers of students from Business (3.5%) and Humanities (3.4%) backgrounds. At entry, GPA and GAMSAT scores varied significantly with Biomedical Science and Science students having significantly higher scores than Health students. Health students consistently outperformed students from other disciplines in all themes while Biomedical Science students underperformed. CONCLUSIONS: Our data suggest that a Health-related undergraduate degree results in the best performance throughout medical school, whereas a Biomedical Science background is associated with lower performance. These findings challenge the traditional Biomedical Science pathway into medicine and suggest that a health background might be more favourable when determining the selection criteria for graduate entry into medicine.


Assuntos
Desempenho Acadêmico , Educação de Graduação em Medicina , Estudantes de Medicina , Humanos , Educação de Graduação em Medicina/métodos , Avaliação Educacional , Critérios de Admissão Escolar , Faculdades de Medicina , Estudantes
3.
Brain Behav Immun ; 82: 309-318, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31493447

RESUMO

An emerging novel therapeutic agent for major depressive disorder, minocycline, has the potential to influence both gut microbiome and inflammatory status. The present study showed that chronic high fat diet feeding led to changes in both behaviour and the gut microbiome in male mice, without an overt inflammatory response. The diet-induced behavioural changes were characterised as increased immobility in the forced swim test and changes in locomotor activities in the open field test. Minocycline significantly altered the gut microbiome, rendering a community distinctly different to both untreated healthy and diet-affected states. In contrast, minocycline did not reverse high fat diet-induced changes in behaviour.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Minociclina/farmacologia , Animais , Ansiedade/metabolismo , Comportamento Animal/fisiologia , Depressão/metabolismo , Transtorno Depressivo Maior/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microbiota/efeitos dos fármacos , Minociclina/metabolismo
4.
Exp Physiol ; 101(7): 801-10, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27064134

RESUMO

What is the central question of this study? Oxidative stress may play a role in compromising intestinal epithelial barrier integrity in pigs subjected to heat stress, but it is unknown whether an increase of dietary antioxidants (selenium and vitamin E) could alleviate gut leakiness in heat-stressed pigs. What is the main finding and its importance? Levels of dietary selenium (1.0 p.p.m.) and vitamin E (200 IU kg(-1) ) greater than those usually recommended for pigs reduced intestinal leakiness caused by heat stress. This finding suggests that oxidative stress plays a role in compromising intestinal epithelial barrier integrity in heat-stressed pigs and also provides a nutritional strategy for mitigating these effects. Heat stress compromises the intestinal epithelial barrier integrity of mammals through mechanisms that may include oxidative stress. Our objective was to test whether dietary supplementation with antioxidants, selenium (Se) and vitamin E (VE), protects intestinal epithelial barrier integrity in heat-stressed pigs. Female growing pigs (n = 48) were randomly assigned to four diets containing from 0.2 p.p.m. Se and 17 IU kg(-1) VE (control, National Research Council recommended) to 1.0 p.p.m. Se and 200 IU kg(-1) VE for 14 days. Six pigs from each dietary treatment were then exposed to either thermoneutral (20°C) or heat-stress conditions (35°C 09.00-17.00 h and 28°C overnight) for 2 days. Transepithelial electrical resistance and fluorescein isothiocyanate-dextran (4 kDa; FD4) permeability were measured in isolated jejunum and ileum using Ussing chambers. Rectal temperature, respiratory rate and intestinal HSP70 mRNA abundance increased (all P < 0.001), and respiratory alkalosis occurred, suggesting that pigs were heat stressed. Heat stress also increased FD4 permeability and decreased transepithelial electrical resistance (both P < 0.01). These changes were associated with changes indicative of oxidative stress, a decreased glutathione peroxidase (GPX) activity and an increased glutathione disulfide (GSSG)-to-glutathione (GSH) ratio (both P < 0.05). With increasing dosage of Se and VE, GPX-2 mRNA (P = 0.003) and GPX activity (P = 0.049) increased linearly, the GSSG:GSH ratio decreased linearly (P = 0.037), and the impacts of heat stress on intestinal barrier function were reduced (P < 0.05 for both transepithelial electrical resistance and FD4 permeability). In conclusion, in pigs an increase of dietary Se and VE mitigated the impacts of heat stress on intestinal barrier integrity, associated with a reduction in oxidative stress.


Assuntos
Transtornos de Estresse por Calor/tratamento farmacológico , Mucosa Intestinal/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Selênio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Vitamina E/farmacologia , Animais , Antioxidantes/metabolismo , Temperatura Corporal/efeitos dos fármacos , Dieta/métodos , Suplementos Nutricionais , Feminino , Glutationa/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Transtornos de Estresse por Calor/metabolismo , Temperatura Alta , Mucosa Intestinal/metabolismo , Oxirredução/efeitos dos fármacos , Taxa Respiratória/efeitos dos fármacos , Suínos
5.
Cell Tissue Res ; 359(2): 693-698, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25378285

RESUMO

This study has investigated the patterns of colocalisation of the conventional K cell marker, glucagon-like insulinotropic peptide (GIP), and the L cell markers, glucagon like peptide-1 (GLP-1) and peptide YY (PYY), in enteroendocrine cells (EEC) of the small intestine and colon of mouse and pig. All combinations of the hormones, 3 in a cell, 2 in a cell and 1 at a time, were encountered. In both species, the three most common EEC types contained (1) both GLP-1 and PYY but not GIP, (2) GLP-1 alone or (3) GIP plus GLP-1 without PYY. Few GIP plus PYY cells and rare cells containing all 3 hormones were encountered. Gradients of cell types occurred along the intestine. For example, in mouse, there were no PYY cells in the duodenum and few in the jejunum, but >50% of labelled EEC in the distal ileum and colon were PYY immunoreactive. By contrast, over 40% of EEC in the pig duodenum contained PYY, and most also contained either GLP-1 or GIP. The gradient in pig was less pronounced. It is concluded that the traditional classification of K and L cells requires revision, and that there are major inter-species differences in the patterns of colocalisation of hormones that have been used to characterise K and L cells.


Assuntos
Colo/citologia , Células Enteroendócrinas/citologia , Hormônios/metabolismo , Intestino Delgado/citologia , Animais , Colo/metabolismo , Células Enteroendócrinas/metabolismo , Polipeptídeo Inibidor Gástrico/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Intestino Delgado/metabolismo , Camundongos Endogâmicos C57BL , Peptídeo YY/metabolismo , Sus scrofa
6.
Cell Tissue Res ; 357(1): 63-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24842049

RESUMO

A sub-group of enteroendocrine cells (L cells) release gastrointestinal hormones, GLP-1 and PYY, which have different but overlapping physiological effects, in response to intraluminal nutrients. Whilst their release profiles are not identical, how the plasma levels of these two hormones are differentially regulated is not well understood. We investigate the possibility that GLP-1 and PYY are in separate storage vesicles. In this study, the subcellular location of GLP-1 and PYY storage organelles is investigated using double-labelling immunohistochemistry, super resolution microscopy and high-resolution confocal microscopy. In all species tested, human, pig, rat and mouse, most cytoplasmic stores that exhibited GLP-1 or PYY immunofluorescence were distinct from each other. The volume occupancy, determined by 3D analysis, overlapped by only about 10∼20 %. At the lower resolution achieved by conventional confocal microscopy, there was also evidence of GLP-1 and PYY being in separate storage compartments but, in subcellular regions where there were many storage vesicles, separate storage could not be resolved. The results indicate that different storage vesicles in L cells contain predominantly GLP-1 or predominantly PYY. Whether GLP-1 and PYY storage vesicles are selectively mobilised and their products are selectively released needs to be determined.


Assuntos
Células Enteroendócrinas/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo YY/metabolismo , Animais , Células Enteroendócrinas/citologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Suínos
7.
Adv Exp Med Biol ; 817: 39-71, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24997029

RESUMO

The digestive system is innervated through its connections with the central nervous system (CNS) and by the enteric nervous system (ENS) within the wall of the gastrointestinal tract. The ENS works in concert with CNS reflex and command centers and with neural pathways that pass through sympathetic ganglia to control digestive function. There is bidirectional information flow between the ENS and CNS and between the ENS and sympathetic prevertebral ganglia.The ENS in human contains 200-600 million neurons, distributed in many thousands of small ganglia, the great majority of which are found in two plexuses, the myenteric and submucosal plexuses. The myenteric plexus forms a continuous network that extends from the upper esophagus to the internal anal sphincter. Submucosal ganglia and connecting fiber bundles form plexuses in the small and large intestines, but not in the stomach and esophagus. The connections between the ENS and CNS are carried by the vagus and pelvic nerves and sympathetic pathways. Neurons also project from the ENS to prevertebral ganglia, the gallbladder, pancreas and trachea.The relative roles of the ENS and CNS differ considerably along the digestive tract. Movements of the striated muscle esophagus are determined by neural pattern generators in the CNS. Likewise the CNS has a major role in monitoring the state of the stomach and, in turn, controlling its contractile activity and acid secretion, through vago-vagal reflexes. In contrast, the ENS in the small intestine and colon contains full reflex circuits, including sensory neurons, interneurons and several classes of motor neuron, through which muscle activity, transmucosal fluid fluxes, local blood flow and other functions are controlled. The CNS has control of defecation, via the defecation centers in the lumbosacral spinal cord. The importance of the ENS is emphasized by the life-threatening effects of some ENS neuropathies. By contrast, removal of vagal or sympathetic connections with the gastrointestinal tract has minor effects on GI function. Voluntary control of defecation is exerted through pelvic connections, but cutting these connections is not life-threatening and other functions are little affected.


Assuntos
Sistema Nervoso Entérico/fisiologia , Trato Gastrointestinal/inervação , Animais , Sistema Nervoso Central/fisiologia , Humanos , Neurônios Motores/fisiologia , Reflexo , Nervo Vago/fisiologia
8.
Nutrients ; 16(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38794640

RESUMO

Anthocyanins have gained significant popularity in recent years for their diverse health benefits, yet their limited bioavailability poses a challenge. To address this concern, technologies have emerged to enhance anthocyanin concentration, often isolating these compounds from other food constituents. However, the extent to which isolated anthocyanins confer health benefits compared to their whole-food counterparts remains unclear. This review explores the current literature on anthocyanin bioavailability and metabolism in the body, with a focus on comparing bioavailability when consumed as extracts versus whole foods rich in anthocyanins, drawing from in vitro, in vivo, and human clinical studies. While direct comparisons between anthocyanin bioavailability in whole foods versus isolates are scarce, prevailing evidence favours whole-food consumption over anthocyanin extracts. Further clinical investigations, preferably with direct comparisons, are needed to validate these findings and elucidate the nuanced interplay between anthocyanins and food matrices, informing future research directions and practical recommendations.


Assuntos
Antocianinas , Disponibilidade Biológica , Extratos Vegetais , Antocianinas/farmacocinética , Humanos , Extratos Vegetais/farmacocinética , Animais
9.
Nutrients ; 16(18)2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39339738

RESUMO

Cyclic weight loss and subsequent regain after dieting and non-dieting periods, a phenomenon termed yoyo dieting, places individuals at greater risk of metabolic complications and alters gut microbiome composition. Resistant starch (RS) improves gut health and systemic metabolism. This study aimed to investigate the effect of yoyo dieting and RS on the metabolism and gut microbiome. C57BL/6 mice were assigned to 6 diets for 20 weeks, including control, high fat (HF), yoyo (alternating HF and control diets every 5 weeks), control with RS, HF with RS, and yoyo with RS. Metabolic outcomes and microbiota profiling using 16S rRNA sequencing were examined. Yoyo dieting resulted in short-term weight loss, which led to improved liver health and insulin tolerance but also a greater rate of weight gain compared to continuous HF feeding, as well as a different microbiota profile that was in an intermediate configuration between the control and HF states. Mice fed HF and yoyo diets supplemented with RS gained less weight than those fed without RS. RS supplementation in yoyo mice appeared to shift the gut microbiota composition closer to the control state. In conclusion, yoyo dieting leads to obesity relapse, and increased RS intake reduces weight gain and might help prevent rapid weight regain via gut microbiome restoration.


Assuntos
Dieta Hiperlipídica , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Amido Resistente , Redução de Peso , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Redução de Peso/efeitos dos fármacos , Masculino , Dieta Hiperlipídica/efeitos adversos , Camundongos , Amido Resistente/farmacologia , Obesidade/microbiologia , RNA Ribossômico 16S , Amido/farmacologia , Amido/administração & dosagem , Aumento de Peso/efeitos dos fármacos , Dieta/métodos
10.
Nutrients ; 16(18)2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39339770

RESUMO

Excessive body weight is associated with many chronic metabolic diseases and weight loss, so far, remains the gold standard treatment. However, despite tremendous efforts exploring optimal treatments for obesity, many individuals find losing weight and maintaining a healthy body weight difficult. Weight loss is often not sustainable resulting in weight regain and subsequent efforts to lose weight. This cyclic pattern of weight loss and regain is termed "yoyo dieting" and predisposes individuals to obesity and metabolic comorbidities. How yoyo dieting might worsen obesity complications during the weight recurrence phase remains unclear. In particular, there is limited data on the role of the gut microbiome in yoyo dieting. Gut health distress, especially gut inflammation and microbiome perturbation, is strongly associated with metabolic dysfunction and disturbance of energy homeostasis in obesity. In this review, we summarise current evidence of the crosstalk between the gastrointestinal system and energy balance, and the effects of yoyo dieting on gut inflammation and gut microbiota reshaping. Finally, we focus on the potential effects of post-dieting weight loss in improving gut health and identify current knowledge gaps within the field, including gut-derived peptide hormones and their potential suitability as targets to combat weight regain, and how yoyo dieting and associated changes in the microbiome affect the gut barrier and the enteric nervous system, which largely remain to be determined.


Assuntos
Microbioma Gastrointestinal , Obesidade , Redução de Peso , Humanos , Microbioma Gastrointestinal/fisiologia , Obesidade/microbiologia , Metabolismo Energético , Dieta Redutora , Inflamação , Trato Gastrointestinal/microbiologia , Aumento de Peso
11.
Nutrients ; 15(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36678276

RESUMO

Dietary advanced glycation end-products (AGEs) are a heterogeneous group of compounds formed when reducing sugars are heated with proteins, amino acids, or lipids at high temperatures for a prolonged period. The presence and accumulation of AGEs in numerous cell types and tissues are known to be prevalent in the pathology of many diseases. Modern diets, which contain a high proportion of processed foods and therefore a high level of AGE, cause deleterious effects leading to a multitude of unregulated intracellular and extracellular signalling and inflammatory pathways. Currently, many studies focus on investigating the chemical and structural aspects of AGEs and how they affect the metabolism and the cardiovascular and renal systems. Studies have also shown that AGEs affect the digestive system. However, there is no complete picture of the implication of AGEs in this area. The gastrointestinal tract is not only the first and principal site for the digestion and absorption of dietary AGEs but also one of the most susceptible organs to AGEs, which may exert many local and systemic effects. In this review, we summarise the current evidence of the association between a high-AGE diet and poor health outcomes, with a special focus on the relationship between dietary AGEs and alterations in the gastrointestinal structure, modifications in enteric neurons, and microbiota reshaping.


Assuntos
Produtos Finais de Glicação Avançada , Reação de Maillard , Produtos Finais de Glicação Avançada/efeitos adversos , Produtos Finais de Glicação Avançada/metabolismo , Dieta , Coração
12.
Cell Tissue Res ; 349(2): 565-76, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22688956

RESUMO

Recent investigation of the intestine following ischemia and reperfusion (I/R) has revealed that nitric oxide synthase (NOS) neurons are more strongly affected than other neuron types. This implies that NO originating from NOS neurons contributes to neuronal damage. However, there is also evidence of the neuroprotective effects of NO. In this study, we compared the effects of I/R on the intestines of neuronal NOS knockout (nNOS(-/-)) mice and wild-type mice. I/R caused histological damage to the mucosa and muscle and infiltration of neutrophils into the external muscle layers. Damage to the mucosa and muscle was more severe and greater infiltration by neutrophils occurred in the first 24 h in nNOS(-/-) mice. Immunohistochemistry for the contractile protein, α-smooth muscle actin, was used to evaluate muscle damage. Smooth muscle actin occurred in the majority of smooth muscle cells in the external musculature of normal mice but was absent from most cells and was reduced in the cytoplasm of other cells following I/R. The loss was greater in nNOS(-/-) mice. Basal contractile activity of the longitudinal muscle and contractile responses to nerve stimulation or a muscarinic agonist were reduced in regions subjected to I/R and the effects were greater in nNOS(-/-) mice. Reductions in responsiveness also occurred in regions of operated mice not subjected to I/R. This is attributed to post-operative ileus that is not significantly affected by knockout of nNOS. The results indicate that deleterious effects are greater in regions subjected to I/R in mice lacking nNOS compared with normal mice, implying that NO produced by nNOS has protective effects that outweigh any damaging effect of this free radical produced by enteric neurons.


Assuntos
Intestino Delgado/enzimologia , Intestino Delgado/patologia , Óxido Nítrico Sintase Tipo I/genética , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/patologia , Actinas/análise , Animais , Feminino , Deleção de Genes , Intestino Delgado/metabolismo , Intestino Delgado/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Muscular , Músculo Liso/enzimologia , Músculo Liso/metabolismo , Músculo Liso/fisiopatologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/fisiopatologia
13.
Cell Tissue Res ; 343(2): 411-9, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21153664

RESUMO

Periods of ischemia followed by restoration of blood flow cause ischemia/reperfusion (I/R) injury. In the intestine, I/R damage to the mucosa and neurons is prominent. Functionally, abnormalities occur in motility, most conspicuously a slowing of transit, possibly as a consequence of damage to neurons and/or muscle. Here, we describe degenerative and regenerative changes that have not been previously reported in intestinal muscle. The mouse small intestine was made ischemic for 1 h, followed by re-perfusion for 1 h to 7 days. The tissues were examined histologically, after hematoxylin/eosin and Masson's trichrome staining, and by myeloperoxidase histochemistry to detect inflammatory reactions to I/R. Histological analysis revealed changes in the mucosa, muscle, and neurons. The mucosa was severely but transiently damaged. The mucosal surface was sloughed off at 1-3 h, but re-epithelialization occurred by 12 h, and the epithelium appeared healthy by 1-2 days. Longitudinal muscle degeneration was followed by regeneration, but little effect on the circular muscle was noted. The first signs of muscle change were apparent at 3-12 h, and by 1 and 2 days, extensive degeneration within the muscle was observed, which included clear cytoplasm, pyknotic nuclei, and apoptotic bodies. The muscle recovered quickly and appeared normal at 7 days. Histological evidence of neuronal damage was apparent at 1-7 days. Neutrophils were not present in the muscle layers and were infrequent in the mucosa. However, they were often seen in the longitudinal muscle at 1-3 days and were also present in the circular muscle. Neutrophil numbers increased in the mucosa in both I/R and sham-operated animals and remained elevated from 1 h to 7 days. We conclude that I/R causes severe longitudinal muscle damage, which might contribute to the long-term motility deficits observed after I/R injury to the intestine.


Assuntos
Intestino Delgado/patologia , Traumatismo por Reperfusão/patologia , Animais , Histocitoquímica , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Intestino Delgado/irrigação sanguínea , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso/patologia , Neutrófilos/patologia
14.
Front Neurosci ; 14: 594818, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584175

RESUMO

RXFP3 (relaxin-family peptide 3 receptor) is the cognate G-protein-coupled receptor for the neuropeptide, relaxin-3. RXFP3 is expressed widely throughout the brain, including the hypothalamus, where it has been shown to modulate feeding behavior and neuroendocrine activity in rodents. In order to better characterize its potential mechanisms of action, this study determined whether RXFP3 is expressed by dopaminergic neurons within the arcuate nucleus (ARC) and dorsomedial hypothalamus (DMH), in addition to the ventral tegmental area (VTA). Neurons that express RXFP3 were visualized in coronal brain sections from RXFP3-Cre/tdTomato mice, which express the tdTomato fluorophore within RXFP3-positive cells, and dopaminergic neurons in these areas were visualized by simultaneous immunohistochemical detection of tyrosine hydroxylase-immunoreactivity (TH-IR). Approximately 20% of ARC neurons containing TH-IR coexpressed tdTomato fluorescence, suggesting that RXFP3 can influence the dopamine pathway from the ARC to the pituitary gland that controls prolactin release. The ability of prolactin to reduce leptin sensitivity and increase food consumption therefore represents a potential mechanism by which RXFP3 activation influences feeding. A similar proportion of DMH neurons containing TH-IR expressed RXFP3-related tdTomato fluorescence, consistent with a possible RXFP3-mediated regulation of stress and neuroendocrine circuits. In contrast, RXFP3 was barely detected within the VTA. TdTomato signal was absent from the ARC and DMH in sections from Rosa26-tdTomato mice, suggesting that the cells identified in RXFP3-Cre/tdTomato mice expressed authentic RXFP3-related tdTomato fluorescence. Together, these findings identify potential hypothalamic mechanisms through which RXFP3 influences neuroendocrine control of metabolism, and further highlight the therapeutic potential of targeting RXFP3 in feeding-related disorders.

15.
Cell Tissue Res ; 335(3): 529-38, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19082842

RESUMO

Previous studies have demonstrated that neurofilament proteins are expressed by type II neurons in the enteric plexuses of a range of species from mouse to human. However, two previous studies have failed to reveal this association in the guinea-pig. Furthermore, immunohistochemistry for neurofilaments has revealed neurons with a single axon and spiny dendrites in human and pig but this morphology has not been described in the guinea-pig or other species. We have used antibodies against high- and medium-weight neurofilament proteins (NF-H and NF-M) to re-examine enteric neurons in the guinea-pig. NF-H immunoreactivity occurred in all type II neurons (identified by their IB4 binding) but these neurons were never NF-M-immunoreactive. On the other hand, 17% of myenteric neurons expressed NF-M. Many of these were uni-axonal neurons with spiny dendrites and nitric oxide synthase (NOS) immunoreactivity. NOS immunoreactivity occurred in surface expansions of the cytoplasm that did not contain neurofilament immunoreactivity. Thus, because of their NOS immunoreactivity, spiny neurons had the appearance of type I neurons. This indicates that the apparent morphologies and the morphological classifications of these neurons are dependent on the methods used to reveal them. We conclude that spiny type I NOS-immunoreactive neurons have similar morphologies in human and guinea-pig and that many of these are inhibitory motor neurons. Both type II and neuropeptide-Y-immunoreactive neurons in the submucosal ganglia exhibit NF-H immunoreactivity. NF-M has been observed in nerve fibres, but not in nerve cell bodies, in the submucosa.


Assuntos
Sistema Nervoso Entérico/citologia , Proteínas de Neurofilamentos/metabolismo , Neurônios/citologia , Animais , Sistema Nervoso Entérico/metabolismo , Feminino , Cobaias , Imuno-Histoquímica , Intestino Delgado/inervação , Intestino Delgado/metabolismo , Masculino , Neurônios/metabolismo , Neuropeptídeo Y/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo
16.
Acta Neuropathol ; 118(2): 261-70, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19466432

RESUMO

Damage following ischemia and reperfusion (I/R) is common in the intestine and can be caused during abdominal surgery, in several disease states and following intestinal transplantation. Most studies have concentrated on damage to the mucosa, although published evidence also points to effects on neurons. Moreover, alterations of neuronally controlled functions of the intestine persist after I/R. The present study was designed to investigate the time course of damage to neurons and the selectivity of the effect of I/R damage for specific types of enteric neurons. A branch of the superior mesenteric artery supplying the distal ileum of anesthetised guinea pigs was occluded for 1 h and the animals were allowed to recover for 2 h to 4 weeks before tissue was taken for the immunohistochemical localization of markers of specific neuron types in tissues from sham and I/R animals. The dendrites of neurons with nitric oxide synthase (NOS) immunoreactivity, which are inhibitory motor neurons and interneurons, were distorted and swollen by 24 h after I/R and remained enlarged up to 28 days. The total neuron profile areas (cell body plus dendrites) increased by 25%, but the sizes of cell bodies did not change significantly. Neurons of type II morphology (intrinsic primary afferent neurons), revealed by NeuN immunoreactivity, were transiently reduced in cell size, at 24 h and 7 days. These neurons also showed signs of minor cell surface blebbing. Calretinin neurons, many of which are excitatory motor neurons, were unaffected. Thus, this study revealed a selective damage to NOS neurons that was observed at 24 h and persisted up to 4 weeks, without a significant change in the relative numbers of NOS neurons.


Assuntos
Plexo Mientérico/patologia , Neurônios/patologia , Traumatismo por Reperfusão/patologia , Animais , Contagem de Células , Feminino , Cobaias , Íleo/irrigação sanguínea , Íleo/inervação , Imuno-Histoquímica , Masculino , Microscopia Confocal , Plexo Mientérico/metabolismo , Neurônios/metabolismo , Óxido Nítrico Sintase/metabolismo , Traumatismo por Reperfusão/metabolismo
17.
World J Gastroenterol ; 22(35): 8026-40, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27672297

RESUMO

AIM: To determine if manipulation of dietary advanced glycation end product (AGE), intake affects non-alcoholic fatty liver disease (NAFLD) progression and whether these effects are mediated via RAGE. METHODS: Male C57Bl6 mice were fed a high fat, high fructose, high cholesterol (HFHC) diet for 33 wk and compared with animals on normal chow. A third group were given a HFHC diet that was high in AGEs. Another group was given a HFHC diet that was marinated in vinegar to prevent the formation of AGEs. In a second experiment, RAGE KO animals were fed a HFHC diet or a high AGE HFHC diet and compared with wildtype controls. Hepatic biochemistry, histology, picrosirius red morphometry and hepatic mRNA were determined. RESULTS: Long-term consumption of the HFHC diet generated significant steatohepatitis and fibrosis after 33 wk. In this model, hepatic 4-hydroxynonenal content (a marker of chronic oxidative stress), hepatocyte ballooning, picrosirius red staining, α-smooth muscle actin and collagen type 1A gene expression were all significantly increased. Increasing the AGE content of the HFHC diet by baking further increased these markers of liver damage, but this was abrogated by pre-marination in acetic acid. In response to the HFHC diet, RAGE(-/-) animals developed NASH of similar severity to RAGE(+/+) animals but were protected from the additional harmful effects of the high AGE containing diet. Studies in isolated Kupffer cells showed that AGEs increase cell proliferation and oxidative stress, providing a likely mechanism through which these compounds contribute to liver injury. CONCLUSION: In the HFHC model of NAFLD, manipulation of dietary AGEs modulates liver injury, inflammation, and liver fibrosis via a RAGE dependent pathway. This suggests that pharmacological and dietary strategies targeting the AGE/RAGE pathway could slow the progression of NAFLD.


Assuntos
Dieta Hiperlipídica , Produtos Finais de Glicação Avançada/administração & dosagem , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ácido Acético , Animais , Colesterol/administração & dosagem , Progressão da Doença , Fígado Gorduroso/metabolismo , Frutose/administração & dosagem , Inflamação/metabolismo , Células de Kupffer/citologia , Fígado/metabolismo , Cirrose Hepática/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais
18.
Nutrients ; 8(10)2016 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-27735854

RESUMO

TRPA1 is a ligand-activated cation channel found in the intestine and other tissues. Components of food that stimulate TRPA1 receptors (phytonutrients) include allyl isothiocyanate, cinnamaldehyde and linalool, but these may also act at other receptors. Cells lining the intestinal mucosa are immunoreactive for TRPA1 and Trpa1 mRNA occurs in mucosal extracts, suggesting that the TRPA1 receptor is the target for these agonists. However, in situ hybridisation reveals Trpa1 expression in 5-HT containing enteroendocrine cells, not enterocytes. TRPA1 agonists evoke mucosal secretion, which may be indirect (through release of 5-HT) or direct by activation of enterocytes. We investigated effects of the phytonutrients on transmucosal ion currents in mouse duodenum and colon, and the specificity of the phytonutrients in cells transfected with Trpa1, and in Trpa1-deficient mice. The phytonutrients increased currents in the duodenum with the relative potencies: allyl isothiocyanate (AITC) > cinnamaldehyde > linalool (0.1 to 300 µM). The rank order was similar in the colon, but linalool was ineffective. Responses to AITC were reduced by the TRPA1 antagonist HC-030031 (100 µM), and were greatly diminished in Trpa1-/- duodenum and colon. Responses were not reduced by tetrodotoxin, 5-HT receptor antagonists, or atropine, but inhibition of prostaglandin synthesis reduced responses. Thus, functional TRPA1 channels are expressed by enterocytes of the duodenum and colon. Activation of enterocyte TRPA1 by food components has the potential to facilitate nutrient absorption.


Assuntos
Mucosa Intestinal/fisiologia , Compostos Fitoquímicos/farmacologia , Canais de Potencial de Receptor Transitório/efeitos dos fármacos , Acroleína/análogos & derivados , Acroleína/farmacologia , Monoterpenos Acíclicos , Animais , Cálcio/metabolismo , Colo/fisiologia , Duodeno/fisiologia , Fenômenos Eletrofisiológicos , Enterócitos/efeitos dos fármacos , Enterócitos/metabolismo , Alimentos , Expressão Gênica , Células HEK293 , Humanos , Mucosa Intestinal/química , Isotiocianatos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monoterpenos/farmacologia , Antagonistas do Receptor 5-HT3 de Serotonina/farmacologia , Canal de Cátion TRPA1 , Transfecção , Canais de Potencial de Receptor Transitório/deficiência , Canais de Potencial de Receptor Transitório/genética
19.
Br J Pharmacol ; 171(5): 1275-86, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24670149

RESUMO

BACKGROUND AND PURPOSE: Some agonists of ghrelin receptors cause rapid decreases in BP. The mechanisms by which they cause hypotension and the pharmacology of the receptors are unknown. EXPERIMENTAL APPROACH: The effects of ligands of ghrelin receptors were investigated in rats in vivo, on isolated blood vessels and on cells transfected with the only molecularly defined ghrelin receptor, growth hormone secretagogue receptor 1a (GHSR1a). KEY RESULTS: Three agonists of GHSR1a receptors, ulimorelin, capromorelin and CP464709, caused a rapid decrease in BP in the anaesthetized rat. The effect was not reduced by either of two GHSR1a antagonists, JMV2959 or YIL781, at doses that blocked effects on colorectal motility, in vivo. The rapid hypotension was not mimicked by ghrelin, unacylated ghrelin or the unacylated ghrelin receptor agonist, AZP531. The early hypotension preceded a decrease in sympathetic nerve activity. Early hypotension was not reduced by hexamethonium or by baroreceptor (sino-aortic) denervation. Ulimorelin also relaxed isolated segments of rat mesenteric artery, and, less potently, relaxed aorta segments. The vascular relaxation was not reduced by JMV2959 or YIL781. Ulimorelin, capromorelin and CP464709 activated GHSR1a in transfected HEK293 cells at nanomolar concentrations. JMV2959 and YIL781 both antagonized effects in these cells, with their pA2 values at the GHSR1a receptor being 6.55 and 7.84. CONCLUSIONS AND IMPLICATIONS: Our results indicate a novel vascular receptor or receptors whose activation by ulimorelin, capromorelin and CP464709 lowered BP. This receptor is activated by low MW GHSR1a agonists, but is not activated by ghrelin.


Assuntos
Hipotensão/fisiopatologia , Compostos Macrocíclicos/farmacologia , Piperidinas/farmacologia , Pirazóis/farmacologia , Receptores de Grelina/agonistas , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/fisiologia , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Grelina/farmacologia , Células HEK293 , Humanos , Hipotensão/induzido quimicamente , Hipotensão/metabolismo , Técnicas In Vitro , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores de Grelina/fisiologia
20.
Nat Rev Gastroenterol Hepatol ; 10(12): 729-40, 2013 12.
Artigo em Inglês | MEDLINE | ID: mdl-24061204

RESUMO

The gastrointestinal tract presents the largest and most vulnerable surface to the outside world. Simultaneously, it must be accessible and permeable to nutrients and must defend against pathogens and potentially injurious chemicals. Integrated responses to these challenges require the gut to sense its environment, which it does through a range of detection systems for specific chemical entities, pathogenic organisms and their products (including toxins), as well as physicochemical properties of its contents. Sensory information is then communicated to four major effector systems: the enteroendocrine hormonal signalling system; the innervation of the gut, both intrinsic and extrinsic; the gut immune system; and the local tissue defence system. Extensive endocrine-neuro-immune-organ-defence interactions are demonstrable, but under-investigated. A major challenge is to develop a comprehensive understanding of the integrated responses of the gut to the sensory information it receives. A major therapeutic opportunity exists to develop agents that target the receptors facing the gut lumen.


Assuntos
Trato Gastrointestinal , Sistema Imunitário , Alimentos , Trato Gastrointestinal/inervação , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa