Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Lett ; 46(22): 5735-5738, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34780449

RESUMO

In this Letter, we adapt the direct search method to metasurface optimization. We show that the direct search algorithm, when coupled with deep learning techniques for free-form meta-atom generation, offers a computationally efficient optimization approach for metasurface optics. As an example, we apply the approach to optimization of achromatic metalenses. Taking advantage of the diverse dispersion responses of free-form meta-atoms, metalenses designed using this approach exhibit superior broadband performances compared to their multilevel diffractive counterparts. We further demonstrate an achromatic and wide-field-of-view metalens design.

2.
Opt Express ; 28(21): 31932-31942, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33115157

RESUMO

Metasurfaces have shown promising potentials in shaping optical wavefronts while remaining compact compared to bulky geometric optics devices. The design of meta-atoms, the fundamental building blocks of metasurfaces, typically relies on trial and error to achieve target electromagnetic responses. This process includes the characterization of an enormous amount of meta-atom designs with varying physical and geometric parameters, which demands huge computational resources. In this paper, a deep learning-based metasurface/meta-atom modeling approach is introduced to significantly reduce the characterization time while maintaining accuracy. Based on a convolutional neural network (CNN) structure, the proposed deep learning network is able to model meta-atoms with nearly freeform 2D patterns and different lattice sizes, material refractive indices and thicknesses. Moreover, the presented approach features the capability of predicting a meta-atom's wide spectrum response in the timescale of milliseconds, attractive for applications necessitating fast on-demand design and optimization of a meta-atom/metasurface.

3.
Nat Commun ; 12(1): 1225, 2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33619270

RESUMO

Active metasurfaces, whose optical properties can be modulated post-fabrication, have emerged as an intensively explored field in recent years. The efforts to date, however, still face major performance limitations in tuning range, optical quality, and efficiency, especially for non-mechanical actuation mechanisms. In this paper, we introduce an active metasurface platform combining phase tuning in the full 2π range and diffraction-limited performance using an all-dielectric, low-loss architecture based on optical phase change materials (O-PCMs). We present a generic design principle enabling binary switching of metasurfaces between arbitrary phase profiles and propose a new figure-of-merit (FOM) tailored for reconfigurable meta-optics. We implement the approach to realize a high-performance varifocal metalens operating at 5.2 µm wavelength. The reconfigurable metalens features a record large switching contrast ratio of 29.5 dB. We further validate aberration-free and multi-depth imaging using the metalens, which represents a key experimental demonstration of a non-mechanical tunable metalens with diffraction-limited performance.

4.
Nat Nanotechnol ; 16(6): 661-666, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33875868

RESUMO

Active metasurfaces promise reconfigurable optics with drastically improved compactness, ruggedness, manufacturability and functionality compared to their traditional bulk counterparts. Optical phase-change materials (PCMs) offer an appealing material solution for active metasurface devices with their large index contrast and non-volatile switching characteristics. Here we report a large-scale, electrically reconfigurable non-volatile metasurface platform based on optical PCMs. The optical PCM alloy used in the devices, Ge2Sb2Se4Te (GSST), uniquely combines giant non-volatile index modulation capability, broadband low optical loss and a large reversible switching volume, enabling notably enhanced light-matter interactions within the active optical PCM medium. Capitalizing on these favourable attributes, we demonstrated quasi-continuously tuneable active metasurfaces with record half-octave spectral tuning range and large optical contrast of over 400%. We further prototyped a polarization-insensitive phase-gradient metasurface to realize dynamic optical beam steering.

5.
Opt Express ; 17(11): 9071-9, 2009 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-19466157

RESUMO

In this paper we explore the TeO(2)-Bi(2)O(3)-BaO glass family with varied TeO(2) concentration for Raman gain applications, and we report, for the first time, the peak Raman gain coefficients of glasses within this glass family extrapolated from non-resonant absolute Raman cross-section measurements at 785 nm. Estimated Raman gain coefficients show peak values of up to 40 times higher than silica for the main TeO(2) bands. Other optical properties, including index dispersion from the visible to the long wave Infrared (LWIR) are also summarized in this paper.


Assuntos
Algoritmos , Bário , Bismuto , Vidro , Manufaturas , Análise Espectral Raman/métodos , Telúrio , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
6.
Adv Mater ; 30(39): e1803628, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30101495

RESUMO

A novel photothermal process to spatially modulate the concentration of sub-wavelength, high-index nanocrystals in a multicomponent Ge-As-Pb-Se chalcogenide glass thin film resulting in an optically functional infrared grating is demonstrated. The process results in the formation of an optical nanocomposite possessing ultralow dispersion over unprecedented bandwidth. The spatially tailored index and dispersion modification enables creation of arbitrary refractive index gradients. Sub-bandgap laser exposure generates a Pb-rich amorphous phase transforming on heat treatment to high-index crystal phases. Spatially varying nanocrystal density is controlled by laser dose and is correlated to index change, yielding local index modification to ≈+0.1 in the mid-infrared.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa