Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(14): e2205785119, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36972450

RESUMO

Plant breeding relies on crossing-over to create novel combinations of alleles needed to confer increased productivity and other desired traits in new varieties. However, crossover (CO) events are rare, as usually only one or two of them occur per chromosome in each generation. In addition, COs are not distributed evenly along chromosomes. In plants with large genomes, which includes most crops, COs are predominantly formed close to chromosome ends, and there are few COs in the large chromosome swaths around centromeres. This situation has created interest in engineering CO landscape to improve breeding efficiency. Methods have been developed to boost COs globally by altering expression of anti-recombination genes and increase CO rates in certain chromosome parts by changing DNA methylation patterns. In addition, progress is being made to devise methods to target COs to specific chromosome sites. We review these approaches and examine using simulations whether they indeed have the capacity to improve efficiency of breeding programs. We found that the current methods to alter CO landscape can produce enough benefits for breeding programs to be attractive. They can increase genetic gain in recurrent selection and significantly decrease linkage drag around donor loci in schemes to introgress a trait from unimproved germplasm to an elite line. Methods to target COs to specific genome sites were also found to provide advantage when introgressing a chromosome segment harboring a desirable quantitative trait loci. We recommend avenues for future research to facilitate implementation of these methods in breeding programs.


Assuntos
Melhoramento Vegetal , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Fenótipo , Produtos Agrícolas/genética , Cromossomos de Plantas/genética
2.
Mol Plant Microbe Interact ; 35(11): 1018-1033, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35914305

RESUMO

The development of pepper cultivars with durable resistance to the oomycete Phytophthora capsici has been challenging due to differential interactions between the species that allow certain pathogen isolates to cause disease on otherwise resistant host genotypes. Currently, little is known about the pathogen genes involved in these interactions. To investigate the genetic basis of P. capsici virulence on individual pepper genotypes, we inoculated sixteen pepper accessions, representing commercial varieties, sources of resistance, and host differentials, with 117 isolates of P. capsici, for a total of 1,864 host-pathogen combinations. Analysis of disease outcomes revealed a significant effect of inter-species genotype-by-genotype interactions, although these interactions were quantitative rather than qualitative in scale. Isolates were classified into five pathogen subpopulations, as determined by their genotypes at over 60,000 single-nucleotide polymorphisms (SNPs). While absolute virulence levels on certain pepper accessions significantly differed between subpopulations, a multivariate phenotype reflecting relative virulence levels on certain pepper genotypes compared with others showed the strongest association with pathogen subpopulation. A genome-wide association study (GWAS) identified four pathogen loci significantly associated with virulence, two of which colocalized with putative RXLR effector genes and another with a polygalacturonase gene cluster. All four loci appeared to represent broad-spectrum virulence genes, as significant SNPs demonstrated consistent effects regardless of the host genotype tested. Host genotype-specific virulence variants in P. capsici may be difficult to map via GWAS with all but excessively large sample sizes, perhaps controlled by genes of small effect or by multiple allelic variants that have arisen independently. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Capsicum , Phytophthora , Phytophthora/genética , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Doenças das Plantas/genética , Capsicum/genética
3.
Plant Physiol ; 187(3): 1310-1324, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34618067

RESUMO

Coleus (Coleus scutellarioides) is a popular ornamental plant that exhibits a diverse array of foliar color patterns. New cultivars are currently hand selected by both amateur and experienced plant breeders. In this study, we reimagine breeding for color patterning using a quantitative color analysis framework. Despite impressive advances in high-throughput data collection and processing, complex color patterns remain challenging to extract from image datasets. Using a phenotyping approach called "ColourQuant," we extract and analyze pigmentation patterns from one of the largest coleus breeding populations in the world. Working with this massive dataset, we can analyze quantitative relationships between maternal plants and their progeny, identify features that underlie breeder-selections, and collect and compare public input on trait preferences. This study is one of the most comprehensive explorations into complex color patterning in plant biology and provides insights and tools for exploring the color pallet of the plant kingdom.


Assuntos
Coleus/fisiologia , Pigmentos Biológicos/fisiologia , Folhas de Planta/fisiologia , Cor , Pigmentação , Melhoramento Vegetal
4.
Theor Appl Genet ; 135(6): 1939-1950, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35348821

RESUMO

KEY MESSAGE: Sparse testing using genomic prediction can be efficiently used to increase the number of testing environments while maintaining selection intensity in the early yield testing stage without increasing the breeding budget. Sparse testing using genomic prediction enables expanded use of selection environments in early-stage yield testing without increasing phenotyping cost. We evaluated different sparse testing strategies in the yield testing stage of a CIMMYT spring wheat breeding pipeline characterized by multiple populations each with small family sizes of 1-9 individuals. Our results indicated that a substantial overlap between lines across environments should be used to achieve optimal prediction accuracy. As sparse testing leverages information generated within and across environments, the genetic correlations between environments and genomic relationships of lines across environments were the main drivers of prediction accuracy in multi-environment yield trials. Including information from previous evaluation years did not consistently improve the prediction performance. Genomic best linear unbiased prediction was found to be the best predictor of true breeding value, and therefore, we propose that it should be used as a selection decision metric in the early yield testing stages. We also propose it as a proxy for assessing prediction performance to mirror breeder's advancement decisions in a breeding program so that it can be readily applied for advancement decisions by breeding programs.


Assuntos
Melhoramento Vegetal , Triticum , Genoma de Planta , Genômica/métodos , Genótipo , Humanos , Modelos Genéticos , Fenótipo , Melhoramento Vegetal/métodos , Seleção Genética , Triticum/genética
5.
Theor Appl Genet ; 134(1): 279-294, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33037897

RESUMO

KEY MESSAGE: Historical data from breeding programs can be efficiently used to improve genomic selection accuracy, especially when the training set is optimized to subset individuals most informative of the target testing set. The current strategy for large-scale implementation of genomic selection (GS) at the International Maize and Wheat Improvement Center (CIMMYT) global maize breeding program has been to train models using information from full-sibs in a "test-half-predict-half approach." Although effective, this approach has limitations, as it requires large full-sib populations and limits the ability to shorten variety testing and breeding cycle times. The primary objective of this study was to identify optimal experimental and training set designs to maximize prediction accuracy of GS in CIMMYT's maize breeding programs. Training set (TS) design strategies were evaluated to determine the most efficient use of phenotypic data collected on relatives for genomic prediction (GP) using datasets containing 849 (DS1) and 1389 (DS2) DH-lines evaluated as testcrosses in 2017 and 2018, respectively. Our results show there is merit in the use of multiple bi-parental populations as TS when selected using algorithms to maximize relatedness between the training and prediction sets. In a breeding program where relevant past breeding information is not readily available, the phenotyping expenditure can be spread across connected bi-parental populations by phenotyping only a small number of lines from each population. This significantly improves prediction accuracy compared to within-population prediction, especially when the TS for within full-sib prediction is small. Finally, we demonstrate that prediction accuracy in either sparse testing or "test-half-predict-half" can further be improved by optimizing which lines are planted for phenotyping and which lines are to be only genotyped for advancement based on GP.


Assuntos
Genoma de Planta , Melhoramento Vegetal , Seleção Genética , Zea mays/genética , Algoritmos , Genética Populacional , Genótipo , Modelos Genéticos , Fenótipo
6.
Theor Appl Genet ; 133(10): 2853-2868, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32613265

RESUMO

KEY MESSAGE: Heritable variation in phenotypes extracted from multi-spectral images (MSIs) and strong genetic correlations with end-of-season traits indicates the value of MSIs for crop improvement and modeling of plant growth curve. Vegetation indices (VIs) derived from multi-spectral imaging (MSI) platforms can be used to study properties of crop canopy, providing non-destructive phenotypes that could be used to better understand growth curves throughout the growing season. To investigate the amount of variation present in several VIs and their relationship with important end-of-season traits, genetic and residual (co)variances for VIs, grain yield and moisture were estimated using data collected from maize hybrid trials. The VIs considered were Normalized Difference Vegetation Index (NDVI), Green NDVI, Red Edge NDVI, Soil-Adjusted Vegetation Index, Enhanced Vegetation Index and simple Ratio of Near Infrared to Red (Red) reflectance. Genetic correlations of VIs with grain yield and moisture were used to fit multi-trait models for prediction of end-of-season traits and evaluated using within site/year cross-validation. To explore alternatives to fitting multiple phenotypes from MSI, random regression models with linear splines were fit using data collected in 2016 and 2017. Heritability estimates ranging from (0.10 to 0.82) were observed, indicating that there exists considerable amount of genetic variation in these VIs. Furthermore, strong genetic and residual correlations of the VIs, NDVI and NDRE, with grain yield and moisture were found. Considerable increases in prediction accuracy were observed from the multi-trait model when using NDVI and NDRE as a secondary trait. Finally, random regression with a linear spline function shows potential to be used as an alternative to mixed models to fit VIs from multiple time points.


Assuntos
Modelos Genéticos , Fenótipo , Zea mays/crescimento & desenvolvimento , Zea mays/genética , Grão Comestível , Genótipo , Sementes/crescimento & desenvolvimento
7.
Genetics ; 227(1)2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38469622

RESUMO

Design randomizations and spatial corrections have increased understanding of genotypic, spatial, and residual effects in field experiments, but precisely measuring spatial heterogeneity in the field remains a challenge. To this end, our study evaluated approaches to improve spatial modeling using high-throughput phenotypes (HTP) via unoccupied aerial vehicle (UAV) imagery. The normalized difference vegetation index was measured by a multispectral MicaSense camera and processed using ImageBreed. Contrasting to baseline agronomic trait spatial correction and a baseline multitrait model, a two-stage approach was proposed. Using longitudinal normalized difference vegetation index data, plot level permanent environment effects estimated spatial patterns in the field throughout the growing season. Normalized difference vegetation index permanent environment were separated from additive genetic effects using 2D spline, separable autoregressive models, or random regression models. The Permanent environment were leveraged within agronomic trait genomic best linear unbiased prediction either modeling an empirical covariance for random effects, or by modeling fixed effects as an average of permanent environment across time or split among three growth phases. Modeling approaches were tested using simulation data and Genomes-to-Fields hybrid maize (Zea mays L.) field experiments in 2015, 2017, 2019, and 2020 for grain yield, grain moisture, and ear height. The two-stage approach improved heritability, model fit, and genotypic effect estimation compared to baseline models. Electrical conductance and elevation from a 2019 soil survey significantly improved model fit, while 2D spline permanent environment were most strongly correlated with the soil parameters. Simulation of field effects demonstrated improved specificity for random regression models. In summary, the use of longitudinal normalized difference vegetation index measurements increased experimental accuracy and understanding of field spatio-temporal heterogeneity.


Assuntos
Zea mays , Zea mays/genética , Fenótipo , Modelos Genéticos , Análise Espaço-Temporal , Genoma de Planta , Genômica/métodos , Genótipo , Característica Quantitativa Herdável
8.
Foodborne Pathog Dis ; 10(4): 331-7, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23461609

RESUMO

Antibiotic growth promoters (AGPs) have been used as feed additives to improve average daily weight gain and feed efficiency in food animals for more than five decades. However, use of AGPs is associated with the emergence of antibiotic-resistant human pathogens of animal origin, posing a significant threat to food safety and public health. Thus, development of novel alternatives to AGPs is important to mitigate antimicrobial resistance in foodborne pathogens. To achieve this goal, the mode of action of AGPs should be elucidated. In this study, the response of the chicken gut microbiota to AGPs was examined using two culture-independent approaches: phospholipid fatty acid (PLFA) biomarker analysis and 16S rDNA clone library sequencing. PLFA analysis showed that AGP tylosin treatment changed composition of the microbiota in various intestinal sites; however, total viable bacterial biomass in intestine was not affected by tylosin treatment. PLFA analysis also revealed an abundant viable fungal population in chicken microbiota. Eight 16S rDNA libraries (96 clones per library) were constructed using ileal samples from chickens that received either antibiotic-free or medicated feed. The 16S rDNA clone analysis of the growth-relevant samples showed the AGP treatment influenced the diversity of ileum microbiota in the chickens primarily in the Firmicutes division. In particular, Lactobacillus spp. populations in the ileum of AGP-treated chickens were significantly lower than those from chickens receiving antibiotic-free feed. Together, this study revealed novel features of the intestinal microbiota in response to AGP treatment and suggested approach to develop potential alternatives to AGPs for mitigation of antimicrobial resistance in foodborne pathogens.


Assuntos
Ração Animal , Antibacterianos/farmacologia , Intestinos/microbiologia , Metagenoma/efeitos dos fármacos , RNA Ribossômico 16S/isolamento & purificação , Animais , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Galinhas , DNA Bacteriano/genética , Biblioteca Gênica , Intestinos/efeitos dos fármacos , Lactobacillus/efeitos dos fármacos , Lactobacillus/crescimento & desenvolvimento , Lactobacillus/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Tilosina/farmacologia , Aumento de Peso/efeitos dos fármacos
9.
Plant Genome ; 15(3): e20219, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35611838

RESUMO

The potential of genomic selection (GS) to increase the efficiency of breeding programs has been clearly demonstrated; however, the implementation of GS in rice (Oryza sativa L.) breeding programs has been limited. In recent years, efforts have begun to work toward implementing GS into the Louisiana State University (LSU) Agricultural Center rice breeding program. One of the first steps for successful GS implementation is to establish a suitable marker set for the target germplasm and a reliable, cost-effective genotyping platform capable of providing informative marker data with an adequate turnaround time. The objective of this study was to develop a marker set for routine GS and demonstrate its effectiveness in southern U.S. rice germplasm. The utility of the resulting marker set, the LSU500, for GS applications was demonstrated using four years of breeding data across 7,607 experimental lines and four elite biparental populations. The predictive ability of GS ranged from 0.13 to 0.78 for key traits across different market classes and yield trials. Comparisons between phenotypic selection and GS within biparental populations demonstrates similar performance of GS compared with phenotypic selection in predicting future performance. The prediction accuracies obtained with the LSU500 marker set demonstrates the utility of this marker set for cost-effective GS applications in southern U.S. rice breeding programs. The LSU500 marker set has been established through the genotyping service provider Agriplex Genomics, and in the future, it will undergo improvements to reduce the cost and increase the accuracy of GS.


A SNP marker set was developed for genomic selection in southern U.S. rice breeding programs. Predictive ability across target germplasm was shown with 3 yr of data (4,078 lines). Within-population predictive ability was shown across four biparental populations. Genomic and phenotypic selection ability to predict future performance was compared.


Assuntos
Oryza , Genômica/métodos , Humanos , Oryza/genética , Fenótipo , Melhoramento Vegetal/métodos , Seleção Genética
10.
Front Plant Sci ; 13: 1041925, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37082510

RESUMO

Introduction: Cassava (Manihot esculenta) is an annual root crop which provides the major source of calories for over half a billion people around the world. Since its domestication ~10,000 years ago, cassava has been largely clonally propagated through stem cuttings. Minimal sexual recombination has led to an accumulation of deleterious mutations made evident by heavy inbreeding depression. Methods: To locate and characterize these deleterious mutations, and to measure selection pressure across the cassava genome, we aligned 52 related Euphorbiaceae and other related species representing millions of years of evolution. With single base-pair resolution of genetic conservation, we used protein structure models, amino acid impact, and evolutionary conservation across the Euphorbiaceae to estimate evolutionary constraint. With known deleterious mutations, we aimed to improve genomic evaluations of plant performance through genomic prediction. We first tested this hypothesis through simulation utilizing multi-kernel GBLUP to predict simulated phenotypes across separate populations of cassava. Results: Simulations showed a sizable increase of prediction accuracy when incorporating functional variants in the model when the trait was determined by<100 quantitative trait loci (QTL). Utilizing deleterious mutations and functional weights informed through evolutionary conservation, we saw improvements in genomic prediction accuracy that were dependent on trait and prediction. Conclusion: We showed the potential for using evolutionary information to track functional variation across the genome, in order to improve whole genome trait prediction. We anticipate that continued work to improve genotype accuracy and deleterious mutation assessment will lead to improved genomic assessments of cassava clones.

11.
G3 (Bethesda) ; 12(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34751380

RESUMO

Genomic applications such as genomic selection and genome-wide association have become increasingly common since the advent of genome sequencing. The cost of sequencing has decreased in the past two decades; however, genotyping costs are still prohibitive to gathering large datasets for these genomic applications, especially in nonmodel species where resources are less abundant. Genotype imputation makes it possible to infer whole-genome information from limited input data, making large sampling for genomic applications more feasible. Imputation becomes increasingly difficult in heterozygous species where haplotypes must be phased. The practical haplotype graph (PHG) is a recently developed tool that can accurately impute genotypes, using a reference panel of haplotypes. We showcase the ability of the PHG to impute genomic information in the highly heterozygous crop cassava (Manihot esculenta). Accurately phased haplotypes were sampled from runs of homozygosity across a diverse panel of individuals to populate PHG, which proved more accurate than relying on computational phasing methods. The PHG achieved high imputation accuracy, using sparse skim-sequencing input, which translated to substantial genomic prediction accuracy in cross-validation testing. The PHG showed improved imputation accuracy, compared to a standard imputation tool Beagle, especially in predicting rare alleles.


Assuntos
Manihot , Alelos , Estudo de Associação Genômica Ampla , Genótipo , Haplótipos , Humanos , Manihot/genética , Polimorfismo de Nucleotídeo Único
12.
G3 (Bethesda) ; 12(3)2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35088860

RESUMO

Though Saccharina japonica cultivation has been established for many decades in East Asian countries, the domestication process of sugar kelp (Saccharina latissima) in the Northeast United States is still at its infancy. In this study, by using data from our breeding experience, we will demonstrate how obstacles for accelerated genetic gain can be assessed using simulation approaches that inform resource allocation decisions. Thus far, we have used 140 wild sporophytes that were sampled in 2018 from the northern Gulf of Maine to southern New England. From these sporophytes, we sampled gametophytes and made and evaluated over 600 progeny sporophytes from crosses among the gametophytes in 2019 and 2020. The biphasic life cycle of kelp gives a great advantage in selective breeding as we can potentially select both on the sporophytes and gametophytes. However, several obstacles exist, such as the amount of time it takes to complete a breeding cycle, the number of gametophytes that can be maintained in the laboratory, and whether positive selection can be conducted on farm-tested sporophytes. Using the Gulf of Maine population characteristics for heritability and effective population size, we simulated a founder population of 1,000 individuals and evaluated the impact of overcoming these obstacles on rate of genetic gain. Our results showed that key factors to improve current genetic gain rely mainly on our ability to induce reproduction of the best farm-tested sporophytes, and to accelerate the clonal vegetative growth of released gametophytes so that enough gametophyte biomass is ready for making crosses by the next growing season. Overcoming these challenges could improve rates of genetic gain more than 2-fold. Future research should focus on conditions favorable for inducing spring reproduction, and on increasing the amount of gametophyte tissue available in time to make fall crosses in the same year.


Assuntos
Kelp , Phaeophyceae , Células Germinativas Vegetais , Humanos , Kelp/genética , Melhoramento Vegetal , Açúcares
13.
Front Plant Sci ; 13: 930429, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845649

RESUMO

For efficient mechanical harvesting, low grain moisture content at harvest time is essential. Dry-down rate (DR), which refers to the reduction in grain moisture content after the plants enter physiological maturity, is one of the main factors affecting the amount of moisture in the kernels. Dry-down rate is estimated using kernel moisture content at physiological maturity and at harvest time; however, measuring kernel water content at physiological maturity, which is sometimes referred as kernel water content at black layer formation (BWC), is time-consuming and resource-demanding. Therefore, inferring BWC from other correlated and easier to measure traits could improve the efficiency of breeding efforts for dry-down-related traits. In this study, multi-trait genomic prediction models were used to estimate genetic correlations between BWC and water content at harvest time (HWC) and flowering time (FT). The results show there is moderate-to-high genetic correlation between the traits (0.24-0.66), which supports the use of multi-trait genomic prediction models. To investigate genomic prediction strategies, several cross-validation scenarios representing possible implementations of genomic prediction were evaluated. The results indicate that, in most scenarios, the use of multi-trait genomic prediction models substantially increases prediction accuracy. Furthermore, the inclusion of historical records for correlated traits can improve prediction accuracy, even when the target trait is not measured on all the plots in the training set.

14.
G3 (Bethesda) ; 12(7)2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35385099

RESUMO

Modern breeding methods integrate next-generation sequencing and phenomics to identify plants with the best characteristics and greatest genetic merit for use as parents in subsequent breeding cycles to ultimately create improved cultivars able to sustain high adoption rates by farmers. This data-driven approach hinges on strong foundations in data management, quality control, and analytics. Of crucial importance is a central database able to (1) track breeding materials, (2) store experimental evaluations, (3) record phenotypic measurements using consistent ontologies, (4) store genotypic information, and (5) implement algorithms for analysis, prediction, and selection decisions. Because of the complexity of the breeding process, breeding databases also tend to be complex, difficult, and expensive to implement and maintain. Here, we present a breeding database system, Breedbase (https://breedbase.org/, last accessed 4/18/2022). Originally initiated as Cassavabase (https://cassavabase.org/, last accessed 4/18/2022) with the NextGen Cassava project (https://www.nextgencassava.org/, last accessed 4/18/2022), and later developed into a crop-agnostic system, it is presently used by dozens of different crops and projects. The system is web based and is available as open source software. It is available on GitHub (https://github.com/solgenomics/, last accessed 4/18/2022) and packaged in a Docker image for deployment (https://hub.docker.com/u/breedbase, last accessed 4/18/2022). The Breedbase system enables breeding programs to better manage and leverage their data for decision making within a fully integrated digital ecosystem.


Assuntos
Ecossistema , Melhoramento Vegetal , Algoritmos , Produtos Agrícolas/genética , Software
15.
Front Plant Sci ; 12: 685488, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34262585

RESUMO

In maize, doubled haploid (DH) line production capacity of large-sized maize breeding programs often exceeds the capacity to phenotypically evaluate the complete set of testcross candidates in multi-location trials. The ability to partially select DH lines based on genotypic data while maintaining or improving genetic gains for key traits using phenotypic selection can result in significant resource savings. The present study aimed to evaluate genomic selection (GS) prediction scenarios for grain yield and agronomic traits of one of the tropical maize breeding pipelines of CIMMYT in eastern Africa, based on multi-year empirical data for designing a GS-based strategy at the early stages of the pipeline. We used field data from 3,068 tropical maize DH lines genotyped using rAmpSeq markers and evaluated as test crosses in well-watered (WW) and water-stress (WS) environments in Kenya from 2017 to 2019. Three prediction schemes were compared: (1) 1 year of performance data to predict a second year; (2) 2 years of pooled data to predict performance in the third year, and (3) using individual or pooled data plus converting a certain proportion of individuals from the testing set (TST) to the training set (TRN) to predict the next year's data. Employing five-fold cross-validation, the mean prediction accuracies for grain yield (GY) varied from 0.19 to 0.29 under WW and 0.22 to 0.31 under WS, when the 1-year datasets were used training set to predict a second year's data as a testing set. The mean prediction accuracies increased to 0.32 under WW and 0.31 under WS when the 2-year datasets were used as a training set to predict the third-year data set. In a forward prediction scenario, good predictive abilities (0.53 to 0.71) were found when the training set consisted of the previous year's breeding data and converting 30% of the next year's data from the testing set to the training set. The prediction accuracy for anthesis date and plant height across WW and WS environments obtained using 1-year data and integrating 10, 30, 50, 70, and 90% of the TST set to TRN set was much higher than those trained in individual years. We demonstrate that by increasing the TRN set to include genotypic and phenotypic data from the previous year and combining only 10-30% of the lines from the year of testing, the predicting accuracy can be increased, which in turn could be used to replace the first stage of field-based screening partially, thus saving significant costs associated with the testcross formation and multi-location testcross evaluation.

16.
Front Plant Sci ; 12: 658978, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239521

RESUMO

To enable a scalable sparse testing genomic selection (GS) strategy at preliminary yield trials in the CIMMYT maize breeding program, optimal approaches to incorporate genotype by environment interaction (GEI) in genomic prediction models are explored. Two cross-validation schemes were evaluated: CV1, predicting the genetic merit of new bi-parental populations that have been evaluated in some environments and not others, and CV2, predicting the genetic merit of half of a bi-parental population that has been phenotyped in some environments and not others using the coefficient of determination (CDmean) to determine optimized subsets of a full-sib family to be evaluated in each environment. We report similar prediction accuracies in CV1 and CV2, however, CV2 has an intuitive appeal in that all bi-parental populations have representation across environments, allowing efficient use of information across environments. It is also ideal for building robust historical data because all individuals of a full-sib family have phenotypic data, albeit in different environments. Results show that grouping of environments according to similar growing/management conditions improved prediction accuracy and reduced computational requirements, providing a scalable, parsimonious approach to multi-environmental trials and GS in early testing stages. We further demonstrate that complementing the full-sib calibration set with optimized historical data results in improved prediction accuracy for the cross-validation schemes.

17.
Front Plant Sci ; 11: 353, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32292411

RESUMO

Much of the world's population growth will occur in regions where food insecurity is prevalent, with large increases in food demand projected in regions of Africa and South Asia. While improving food security in these regions will require a multi-faceted approach, improved performance of crop varieties in these regions will play a critical role. Current rates of genetic gain in breeding programs serving Africa and South Asia fall below rates achieved in other regions of the world. Given resource constraints, increased genetic gain in these regions cannot be achieved by simply expanding the size of breeding programs. New approaches to breeding are required. The Genomic Open-source Breeding informatics initiative (GOBii) and Excellence in Breeding Platform (EiB) are working with public sector breeding programs to build capacity, develop breeding strategies, and build breeding informatics capabilities to enable routine use of new technologies that can improve the efficiency of breeding programs and increase genetic gains. Simulations evaluating breeding strategies indicate cost-effective implementations of genomic selection (GS) are feasible using relatively small training sets, and proof-of-concept implementations have been validated in the International Maize and Wheat Improvement Center (CIMMYT) maize breeding program. Progress on GOBii, EiB, and implementation of GS in CIMMYT and International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) breeding programs are discussed, as well as strategies for routine implementation of GS in breeding programs serving Africa and South Asia.

18.
Stem Cells ; 26(11): 2768-76, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18719225

RESUMO

Human embryonic stem cells (hESCs) have recently demonstrated the potential for differentiation into germ-like cells in vitro. This provides a novel model for understanding human germ cell development and human infertility. Mouse embryonic fibroblast (MEF) feeders and basic fibroblast growth factor (bFGF) are two sources of signaling that are essential for primary culture of germ cells, yet their role has not been examined in the derivation of germ-like cells from hESCs. Here protein and gene expression demonstrated that both MEF feeders and bFGF can significantly enrich germ cell differentiation from hESCs. Under enriched differentiation conditions, flow cytometry analysis proved 69% of cells to be positive for DDX4 and POU5F1 protein expression, consistent with the germ cell lineage. Importantly, removal of bFGF from feeder-free cultures resulted in a 50% decrease in POU5F1- and DDX4-positive cells. Quantitative reverse transcription-polymerase chain reaction analysis established that bFGF signaling resulted in an upregulation of genes involved in germ cell differentiation with or without feeders; however, feeder conditions caused significant upregulation of premigratory/migratory (Ifitm3, DAZL, NANOG, and POU5F1) and postmigratory (PIWIL2, PUM2) genes, along with the meiotic markers SYCP3 and MLH1. After further differentiation, >90% of cells expressed the meiotic proteins SYCP3 and MLH1. This is the first demonstration that signaling from MEF feeders and bFGF can induce a highly enriched population of germ-like cells derived from hESCs, thus providing a critically needed model for further investigation of human germ cell development and signaling. Disclosure of potential conflicts of interest is found at the end of this article.


Assuntos
Células-Tronco Embrionárias/citologia , Fator 2 de Crescimento de Fibroblastos/fisiologia , Células Germinativas/citologia , Animais , Antígenos de Diferenciação/metabolismo , Diferenciação Celular , Técnicas de Cocultura , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/fisiologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fibroblastos/citologia , Humanos , Camundongos , Transdução de Sinais
20.
Front Plant Sci ; 10: 1502, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824533

RESUMO

Genomic selection predicts the genomic estimated breeding values (GEBVs) of individuals not previously phenotyped. Several studies have investigated the accuracy of genomic predictions in maize but there is little empirical evidence on the practical performance of lines selected based on phenotype in comparison with those selected solely on GEBVs in advanced testcross yield trials. The main objectives of this study were to (1) empirically compare the performance of tropical maize hybrids selected through phenotypic selection (PS) and genomic selection (GS) under well-watered (WW) and managed drought stress (WS) conditions in Kenya, and (2) compare the cost-benefit analysis of GS and PS. For this study, we used two experimental maize data sets (stage I and stage II yield trials). The stage I data set consisted of 1492 doubled haploid (DH) lines genotyped with rAmpSeq SNPs. A subset of these lines (855) representing various DH populations within the stage I cohort was crossed with an individual single-cross tester chosen to complement each population. These testcross hybrids were evaluated in replicated trials under WW and WS conditions for grain yield and other agronomic traits, while the remaining 637 DH lines were predicted using the 855 lines as a training set. The second data set (stage II) consists of 348 DH lines from the first data set. Among these 348 best DH lines, 172 lines selected were solely based on GEBVs, and 176 lines were selected based on phenotypic performance. Each of the 348 DH lines were crossed with three common testers from complementary heterotic groups, and the resulting 1042 testcross hybrids and six commercial checks were evaluated in four to five WW locations and one WS condition in Kenya. For stage I trials, the cross-validated prediction accuracy for grain yield was 0.67 and 0.65 under WW and WS conditions, respectively. We found similar responses to selection using PS and GS for grain yield other agronomic traits under WW and WS conditions. The top 15% of hybrids advanced through GS and PS gave 21%-23% higher grain yield under WW and 51%-52% more grain yield under WS than the mean of the checks. The GS reduced the cost by 32% over the PS with similar selection gains. We concluded that the use of GS for yield under WW and WS conditions in maize can produce selection candidates with similar performance as those generated from conventional PS, but at a lower cost, and therefore, should be incorporated into maize breeding pipelines to increase breeding program efficiency.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa