Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant J ; 116(1): 269-281, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37390084

RESUMO

Transcriptome profiles in plants are heterogenous at every level of morphological organization. Even within organs, cells of the same type can have different patterns of gene expression depending on where they are positioned within tissues. This heterogeneity is associated with non-uniform distribution of biological processes within organs. The regulatory mechanisms that establish and sustain the spatial heterogeneity are unknown. Here, we identify regulatory modules that support functional specialization of different parts of Oryza sativa cv. Nipponbare leaves by leveraging transcriptome data, transcription factor binding motifs and global gene regulatory network prediction algorithms. We generated a global gene regulatory network in which we identified six regulatory modules that were active in different parts of the leaf. The regulatory modules were enriched for genes involved in spatially relevant biological processes, such as cell wall deposition, environmental sensing and photosynthesis. Strikingly, more than 86.9% of genes in the network were regulated by members of only five transcription factor families. We also generated targeted regulatory networks for the large MYB and bZIP/bHLH families to identify interactions that were masked in the global prediction. This analysis will provide a baseline for future single cell and array-based spatial transcriptome studies and for studying responses to environmental stress and demonstrates the extent to which seven coarse spatial transcriptome analysis can provide insight into the regulatory mechanisms supporting functional specialization within leaves.


Assuntos
Redes Reguladoras de Genes , Oryza , Oryza/metabolismo , Perfilação da Expressão Gênica , Transcriptoma , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas/genética
2.
AoB Plants ; 14(5): plac040, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36196395

RESUMO

Drought stress negatively impacts the health of long-lived trees. Understanding the genetic mechanisms that underpin response to drought stress is requisite for selecting or enhancing climate change resilience. We aimed to determine how hybrid poplars respond to prolonged and uniform exposure to drought; how responses to moderate and more severe growth-limiting drought stresses differed; and how drought responses change throughout the day. We established hybrid poplar trees (Populus × 'Okanese') from unrooted stem cutting with abundant soil moisture for 6 weeks. We then withheld water to establish well-watered, moderate and severe growth-limiting drought conditions. These conditions were maintained for 3 weeks during which growth was monitored. We then measured photosynthetic rates and transcriptomes of leaves that had developed during the drought treatments at two times of day. The moderate and severe drought treatments elicited distinct changes in growth and development, photosynthetic rates and global transcriptome profiles. Notably, the time of day of sampling produced the strongest effect in the transcriptome data. The moderate drought treatment elicited global transcriptome changes that were intermediate to the severe and well-watered treatments in the early evening but did not elicit a strong drought response in the morning. Stable drought conditions that are sufficient to limit plant growth elicit distinct transcriptional profiles depending on the degree of water limitation and on the time of day at which they are measured. There appears to be a limited number of genes and functional gene categories that are responsive to all of the tested drought conditions in this study emphasizing the complex nature of drought regulation in long-lived trees.

3.
Mitochondrial DNA B Resour ; 6(1): 274-277, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33553643

RESUMO

The Indian leafwing butterfly Kallima paralekta (Horsfield, 1829) (Nymphalidae) is an Asian forest-dwelling, leaf-mimic. Genome skimming by Illumina sequencing permitted assembly of a complete circular mitogenome of 15,200 bp from K. paralekta consisting of 79.5% AT nucleotides, 22 tRNAs, 13 protein-coding genes, two rRNAs and a control region in the typical butterfly gene order. Kallima paralekta COX1 features an atypical CGA start codon, while ATP6, COX1, COX2, ND4, ND4L, and ND5 exhibit incomplete stop codons completed by 3' A residues added to the mRNA. Phylogenetic reconstruction places K. paraleckta within the monophyletic genus Kallima, sister to Mallika in the subfamily Nymphalinae. These data support the monophyly of tribe Kallimini and contribute to the evolutionary systematics of the Nymphalidae.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa