Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Exp Biol ; 220(Pt 2): 284-293, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28100806

RESUMO

Sleep is an essential behavior exhibited by nearly all animals, and disruption of this process is associated with an array of physiological and behavioral deficits. Sleep is defined by changes in sensory gating that reduce sensory input to the brain, but little is known about the neural basis for interactions between sleep and sensory processing. Blind Mexican cavefish comprise an extant surface dwelling form and 29 cave morphs that have independently evolved increased numbers of mechanoreceptive lateral line neuromasts and convergent evolution of sleep loss. Ablation of the lateral line enhanced sleep in the Pachón cavefish population, suggesting that heightened sensory input underlies evolutionarily derived sleep loss. Targeted lateral line ablation and behavioral analysis localized the wake-promoting neuromasts in Pachón cavefish to superficial neuromasts of the trunk and cranial regions. Strikingly, lateral line ablation did not affect sleep in four other cavefish populations, suggesting that distinct neural mechanisms regulate the evolution of sleep loss in independently derived cavefish populations. Cavefish are subject to seasonal changes in food availability, raising the possibility that sensory modulation of sleep is influenced by metabolic state. We found that starvation promotes sleep in Pachón cavefish, and is not enhanced by lateral line ablation, suggesting that functional interactions occur between sensory and metabolic regulation of sleep. Taken together, these findings support a model where sensory processing contributes to evolutionarily derived changes in sleep that are modulated in accordance with food availability.


Assuntos
Characidae/fisiologia , Sistema da Linha Lateral/fisiologia , Sono , Animais , Evolução Biológica , Cavernas , México
2.
BMC Biol ; 13: 15, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25761998

RESUMO

BACKGROUND: Sleep is characterized by extended periods of quiescence and reduced responsiveness to sensory stimuli. Animals ranging from insects to mammals adapt to environments with limited food by suppressing sleep and enhancing their response to food cues, yet little is known about the genetic and evolutionary relationship between these processes. The blind Mexican cavefish, Astyanax mexicanus is a powerful model for elucidating the genetic mechanisms underlying behavioral evolution. A. mexicanus comprises an extant ancestral-type surface dwelling morph and at least five independently evolved cave populations. Evolutionary convergence on sleep loss and vibration attraction behavior, which is involved in prey seeking, have been documented in cavefish raising the possibility that enhanced sensory responsiveness underlies changes in sleep. RESULTS: We established a system to study sleep and vibration attraction behavior in adult A. mexicanus and used high coverage quantitative trait loci (QTL) mapping to investigate the functional and evolutionary relationship between these traits. Analysis of surface-cave F2 hybrid fish and an outbred cave population indicates that independent genetic factors underlie changes in sleep/locomotor activity and vibration attraction behavior. High-coverage QTL mapping with genotyping-by-sequencing technology identify two novel QTL intervals that associate with locomotor activity and include the narcolepsy-associated tp53 regulating kinase. These QTLs represent the first genomic localization of locomotor activity in cavefish and are distinct from two QTLs previously identified as associating with vibration attraction behavior. CONCLUSIONS: Taken together, these results localize genomic regions underlying sleep/locomotor and sensory changes in cavefish populations and provide evidence that sleep loss evolved independently from enhanced sensory responsiveness.


Assuntos
Cavernas , Characidae/genética , Comportamento Predatório/fisiologia , Privação do Sono/genética , Animais , Evolução Biológica , Cruzamentos Genéticos , Feminino , Hibridização Genética , Locomoção , Masculino , México , Locos de Características Quantitativas/genética , Sono , Vibração
3.
Lab Anim (NY) ; 53(6): 148-159, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38806681

RESUMO

Researchers have advocated elevating mouse housing temperatures from the conventional ~22 °C to the mouse thermoneutral point of 30 °C to enhance translational research. However, the impact of environmental temperature on mouse gastrointestinal physiology remains largely unexplored. Here we show that mice raised at 22 °C exhibit whole gut transit speed nearly twice as fast as those raised at 30 °C, primarily driven by a threefold increase in colon transit speed. Furthermore, gut microbiota composition differs between the two temperatures but does not dictate temperature-dependent differences in gut motility. Notably, increased stress signals from the hypothalamic-pituitary-adrenal axis at 22 °C have a pivotal role in mediating temperature-dependent differences in gut motility. Pharmacological and genetic depletion of the stress hormone corticotropin-releasing hormone slows gut motility in stressed 22 °C mice but has no comparable effect in relatively unstressed 30 °C mice. In conclusion, our findings highlight that colder mouse facility temperatures significantly increase gut motility through hormonal stress pathways.


Assuntos
Motilidade Gastrointestinal , Camundongos Endogâmicos C57BL , Estresse Fisiológico , Animais , Camundongos , Masculino , Temperatura , Sistema Hipotálamo-Hipofisário/fisiologia , Microbioma Gastrointestinal , Sistema Hipófise-Suprarrenal/fisiologia , Hormônio Liberador da Corticotropina/metabolismo
4.
bioRxiv ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38645163

RESUMO

The enteric nervous system (ENS) is contained within two layers of the gut wall and is made up of neurons, immune cells, and enteric glia cells (EGCs) that regulate gastrointestinal (GI) function. EGCs in both inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS) change in response to inflammation, referred to as reactive gliosis. Whether EGCs restricted to a specific layer or region within the GI tract alone can influence intestinal immune response is unknown. Using bulk RNA-sequencing and in situ hybridization, we identify G-protein coupled receptor Gpr37 , as a gene expressed only in EGCs of the myenteric plexus, one of the two layers of the ENS. We show that Gpr37 contributes to key components of LPS-induced reactive gliosis including activation of NF-kB and IFN-y signaling and response genes, lymphocyte recruitment, and inflammation-induced GI dysmotility. Targeting Gpr37 in EGCs presents a potential avenue for modifying inflammatory processes in the ENS.

5.
Front Neurosci ; 17: 1287057, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38027494

RESUMO

Gastrointestinal (GI) symptoms are highly prevalent among individuals with autism spectrum disorder (ASD), but the molecular link between ASD and GI dysfunction remains poorly understood. The enteric nervous system (ENS) is critical for normal GI motility and has been shown to be altered in mouse models of ASD and other neurological disorders. Contactin-associated protein-like 2 (Cntnap2) is an ASD-related synaptic cell-adhesion molecule important for sensory processing. In this study, we examine the role of Cntnap2 in GI motility by characterizing Cntnap2's expression in the ENS and assessing GI function in Cntnap2 mutant mice. We find Cntnap2 expression predominately in enteric sensory neurons. We further assess in vivo and ex vivo GI motility in Cntnap2 mutants and show altered transit time and colonic motility patterns. The overall organization of the ENS appears undisturbed. Our results suggest that Cntnap2 plays a role in GI function and may provide a molecular link between ASD and GI dysfunction.

6.
bioRxiv ; 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37131706

RESUMO

Gastrointestinal (GI) symptoms are highly prevalent among individuals with autism spectrum disorder (ASD), but the molecular link between ASD and GI dysfunction remains poorly understood. The enteric nervous system (ENS) is critical for normal GI motility and has been shown to be altered in mouse models of ASD and other neurological disorders. Contactin-associated protein-like 2 (Cntnap2) is an ASD-related synaptic cell-adhesion molecule important for sensory processing. In this study, we examine the role of Cntnap2 in GI motility by characterizing Cntnap2's expression in the ENS and assessing GI function in Cntnap2 mutant mice. We find Cntnap2 expression predominately in enteric sensory neurons. We further assess in-vivo and ex-vivo GI motility in Cntnap2 mutants and show altered transit time and colonic motility patterns. The overall organization of the ENS appears undisturbed. Our results suggest that Cntnap2 plays a role in GI function and may provide a molecular link between ASD and GI dysfunction.

7.
Reprod Sci ; 28(3): 801-818, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33150487

RESUMO

Sex differences in human placenta exist from early pregnancy to term, however, it is unclear whether these differences are driven solely by sex chromosome complement or are subject to differential sex hormonal regulation. Here, we survey the human chorionic villus (CV) transcriptome for sex-linked signatures from 11 to 16 gestational weeks, corresponding to the first window of increasing testis-derived androgen production in male fetuses. Illumina HiSeq RNA sequencing was performed on Lexogen Quantseq 3' libraries derived from CV biopsies (n = 11 females, n = 12 males). Differential expression (DE) was performed to identify sex-linked transcriptional signatures, followed by chromosome mapping, pathway analysis, predicted protein interaction, and post-hoc linear regressions to identify transcripts that trend over time. We observe 322 transcripts DE between male and female CV from 11 to 16 weeks, with 22 transcripts logFC > 1. Contrary to our predictions, the difference between male and female expression of DE autosomal genes was more pronounced at the earlier gestational ages. In females, we found selective upregulation of extracellular matrix components, along with a number of X-linked genes. In males, DE transcripts centered on chromosome 19, with mitochondrial, immune, and pregnancy maintenance-related transcripts upregulated. Among the highest differentially expressed autosomal genes were CCRL2, LGALS13, and LGALS14, which are known to regulate immune cell interactions. Our results provide insight into sex-linked gene expression in late first and early second trimester developing human placenta and lay the groundwork to understand the mechanistic origins of sex differences in prenatal development.


Assuntos
Androgênios/metabolismo , Vilosidades Coriônicas/metabolismo , Perfilação da Expressão Gênica , Análise para Determinação do Sexo , Processos de Determinação Sexual/genética , Transcriptoma , Feminino , Galectinas/genética , Galectinas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Idade Gestacional , Humanos , Masculino , Gravidez , Proteínas da Gravidez/genética , Proteínas da Gravidez/metabolismo , Receptores CCR/genética , Receptores CCR/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa