Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 150(13)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37376888

RESUMO

The reactivation of developmental genes and pathways during adulthood may contribute to pathogenesis of diseases such as prostate cancer. Analysis of the mechanistic links between development and disease could be exploited to identify signalling pathways leading to disease in the prostate. However, the mechanisms underpinning prostate development require further characterisation to interrogate fully the link between development and disease. Previously, our group developed methods to produce prostate organoids using induced pluripotent stem cells (iPSCs). Here, we show that human iPSCs can be differentiated into prostate organoids using neonatal rat seminal vesicle mesenchyme in vitro. The organoids can be used to study prostate development or modified to study prostate cancer. We also elucidated molecular drivers of prostate induction through RNA-sequencing analyses of the rat urogenital sinus and neonatal seminal vesicles. We identified candidate drivers of prostate development evident in the inductive mesenchyme and epithelium involved with prostate specification. Our top candidates included Spx, Trib3, Snai1, Snai2, Nrg2 and Lrp4. This work lays the foundations for further interrogation of the reactivation of developmental genes in adulthood, leading to prostate disease.


Assuntos
Células-Tronco Pluripotentes Induzidas , Neoplasias da Próstata , Masculino , Humanos , Ratos , Animais , Próstata , Roedores , Sistema Urogenital/fisiologia , Diferenciação Celular/genética , Organoides
2.
Nucleic Acids Res ; 48(10): 5366-5382, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32324216

RESUMO

Resistance to androgen receptor (AR) targeting therapeutics in prostate cancer (PC) is a significant clinical problem. Mechanisms by which this is accomplished include AR amplification and expression of AR splice variants, demonstrating that AR remains a key therapeutic target in advanced disease. For the first time we show that IKBKE drives AR signalling in advanced PC. Significant inhibition of AR regulated gene expression was observed upon siRNA-mediated IKBKE depletion or pharmacological inhibition due to inhibited AR gene expression in multiple cell line models including a LNCaP derivative cell line resistant to the anti-androgen, enzalutamide (LNCaP-EnzR). Phenotypically, this resulted in significant inhibition of proliferation, migration and colony forming ability suggesting that targeting IKBKE could circumvent resistance to AR targeting therapies. Indeed, pharmacological inhibition in the CWR22Rv1 xenograft mouse model reduced tumour size and enhanced survival. Critically, this was validated in patient-derived explants where enzymatic inactivation of IKBKE reduced cell proliferation and AR expression. Mechanistically, we provide evidence that IKBKE regulates AR levels via Hippo pathway inhibition to reduce c-MYC levels at cis-regulatory elements within the AR gene. Thus, IKBKE is a therapeutic target in advanced PC suggesting repurposing of clinically tested IKBKE inhibitors could be beneficial to castrate resistant PC patients.


Assuntos
Quinase I-kappa B/fisiologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Androgênicos/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Via de Sinalização Hippo , Humanos , Quinase I-kappa B/antagonistas & inibidores , Masculino , Camundongos Nus , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/patologia , Receptores Androgênicos/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Transcrição Gênica , Proteínas de Sinalização YAP
3.
Nucleic Acids Res ; 47(11): 5634-5647, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31006810

RESUMO

Resistance to androgen receptor (AR)-targeted therapies in prostate cancer (PC) is a major clinical problem. A key mechanism of treatment resistance in advanced PC is the generation of alternatively spliced forms of the AR termed AR variants (AR-Vs) that are refractory to targeted agents and drive tumour progression. Our understanding of how AR-Vs function is limited due to difficulties in distinguishing their discriminate activities from full-length AR (FL-AR). Here we report the development of a novel CRISPR-derived cell line which is a derivative of CWR22Rv1 cells, called CWR22Rv1-AR-EK, that has lost expression of FL-AR, but retains all endogenous AR-Vs. From this, we show that AR-Vs act unhindered by loss of FL-AR to drive cell growth and expression of androgenic genes. Global transcriptomics demonstrate that AR-Vs drive expression of a cohort of DNA damage response genes and depletion of AR-Vs sensitises cells to ionising radiation. Moreover, we demonstrate that AR-Vs interact with PARP1 and PARP2 and are dependent upon their catalytic function for transcriptional activation. Importantly, PARP blockade compromises expression of AR-V-target genes and reduces growth of CRPC cell lines suggesting a synthetic lethality relationship between AR-Vs and PARP, advocating the use of PARP inhibitors in AR-V positive PC.


Assuntos
Sistemas CRISPR-Cas , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/genética , Algoritmos , Linhagem Celular Tumoral , Proliferação de Células , Dano ao DNA , Reparo do DNA , Ensaios de Seleção de Medicamentos Antitumorais , Técnicas Genéticas , Humanos , Lentivirus , Masculino , Receptores Androgênicos/biossíntese , Análise de Sequência de RNA , Transcriptoma
4.
Nucleic Acids Res ; 45(4): 1793-1804, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-27903893

RESUMO

The androgen receptor (AR) is the main driver of prostate cancer (PC) development and progression, and the primary therapeutic target in PC. To date, two functional ubiquitination sites have been identified on AR, both located in its C-terminal ligand binding domain (LBD). Recent reports highlight the emergence of AR splice variants lacking the LBD that can arise during disease progression and contribute to castrate resistance. Here, we report a novel N-terminal ubiquitination site at lysine 311. Ubiquitination of this site plays a role in AR stability and is critical for its transcriptional activity. Inactivation of this site causes AR to accumulate on chromatin and inactivates its transcriptional function as a consequence of inability to bind to p300. Additionally, mutation at lysine 311 affects cellular transcriptome altering the expression of genes involved in chromatin organization, signaling, adhesion, motility, development and metabolism. Even though this site is present in clinically relevant AR-variants it can only be ubiquitinated in cells when AR retains LBD suggesting a role for AR C-terminus in E2/E3 substrate recognition. We report that as a consequence AR variants lacking the LBD cannot be ubiquitinated in the cellular environment and their protein turnover must be regulated via an alternate pathway.


Assuntos
Receptores Androgênicos/metabolismo , Ativação Transcricional , Ubiquitinação , Aminoácidos/metabolismo , Animais , Linhagem Celular Tumoral , Cromatina/metabolismo , Análise por Conglomerados , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Mutação , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Proteoma , Proteômica/métodos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Receptores Androgênicos/química , Receptores Androgênicos/genética , Transcrição Gênica , Transcriptoma
5.
Br J Cancer ; 118(5): 713-726, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29381681

RESUMO

BACKGROUND: Although the founding members of the INhibitor of Growth (ING) family of histone mark readers, ING1 and ING2, were defined as tumour suppressors in animal models, the role of other ING proteins in cellular proliferation and cancer progression is unclear. METHODS: We transduced ex vivo benign prostate hyperplasia tissues with inducible lentiviral particles to express ING proteins. Proliferation was assessed by H3S10phos immunohistochemistry (IHC). The expression of ING3 was assessed by IHC on a human prostate cancer tissue microarray (TMA). Gene expression was measured by DNA microarray and validated by real-time qPCR. RESULTS: We found that ING3 stimulates cellular proliferation in ex vivo tissues, suggesting that ING3 could be oncogenic. Indeed, ING3 overexpression transformed normal human dermal fibroblasts. We observed elevated levels of ING3 in prostate cancer samples, which correlated with poorer patient survival. Consistent with an oncogenic role, gene-silencing experiments revealed that ING3 is required for the proliferation of breast, ovarian, and prostate cancer cells. Finally, ING3 controls the expression of an intricate network of cell cycle genes by associating with chromatin modifiers and the H3K4me3 mark at transcriptional start sites. CONCLUSIONS: Our investigations create a shift in the prevailing view that ING proteins are tumour suppressors and redefine ING3 as an oncoprotein.


Assuntos
Transformação Celular Neoplásica/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Hiperplasia Prostática/genética , Neoplasias da Próstata/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ciclo Celular , Linhagem Celular , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Progressão da Doença , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Lentivirus/genética , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Hiperplasia Prostática/metabolismo , Neoplasias da Próstata/metabolismo , Análise Serial de Tecidos , Transdução Genética , Regulação para Cima
7.
J Biol Chem ; 291(35): 18326-41, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27281824

RESUMO

Aberrant access to genetic information disrupts cellular homeostasis and can lead to cancer development. One molecular mechanism that regulates access to genetic information includes recognition of histone modifications, which is carried out by protein modules that interact with chromatin and serve as landing pads for enzymatic activities that regulate gene expression. The ING3 tumor suppressor protein contains a plant homeodomain (PHD) that reads the epigenetic code via recognition of histone H3 tri-methylated at lysine 4 (H3K4me3), and this domain is lost or mutated in various human cancers. However, the molecular mechanisms targeting ING3 to histones and the role of this interaction in the cell remain elusive. Thus, we employed biochemical and structural biology approaches to investigate the interaction of the ING3 PHD finger (ING3PHD) with the active transcription mark H3K4me3. Our results demonstrate that association of the ING3PHD with H3K4me3 is in the sub-micromolar range (KD ranging between 0.63 and 0.93 µm) and is about 200-fold stronger than with the unmodified histone H3. NMR and computational studies revealed an aromatic cage composed of Tyr-362, Ser-369, and Trp-385 that accommodate the tri-methylated side chain of H3K4. Mutational analysis confirmed the critical importance of Tyr-362 and Trp-385 in mediating the ING3PHD-H3K4me3 interaction. Finally, the biological relevance of ING3PHD-H3K4me3 binding was demonstrated by the failure of ING3PHD mutant proteins to enhance ING3-mediated DNA damage-dependent cell death. Together, our results reveal the molecular mechanism of H3K4me3 selection by the ING3PHD and suggest that this interaction is important for mediating ING3 tumor suppressive activities.


Assuntos
Histonas/química , Proteínas de Homeodomínio/química , Proteínas Supressoras de Tumor/química , Substituição de Aminoácidos , Morte Celular , Dano ao DNA , Epigênese Genética , Histonas/genética , Histonas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Metilação , Mutação de Sentido Incorreto , Ressonância Magnética Nuclear Biomolecular , Domínios RING Finger , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
8.
Nucleic Acids Res ; 43(1): 196-207, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25488809

RESUMO

Endocrine therapy has successfully been used to treat estrogen receptor (ER)-positive breast cancer, but this invariably fails with cancers becoming refractory to treatment. Emerging evidence has suggested that fluctuations in ER co-regulatory protein expression may facilitate resistance to therapy and be involved in breast cancer progression. To date, a small number of enzymes that control methylation status of histones have been identified as co-regulators of ER signalling. We have identified the histone H3 lysine 9 mono- and di-methyl demethylase enzyme KDM3A as a positive regulator of ER activity. Here, we demonstrate that depletion of KDM3A by RNAi abrogates the recruitment of the ER to cis-regulatory elements within target gene promoters, thereby inhibiting estrogen-induced gene expression changes. Global gene expression analysis of KDM3A-depleted cells identified gene clusters associated with cell growth. Consistent with this, we show that knockdown of KDM3A reduces ER-positive cell proliferation and demonstrate that KDM3A is required for growth in a model of endocrine therapy-resistant disease. Crucially, we show that KDM3A catalytic activity is required for both ER-target gene expression and cell growth, demonstrating that developing compounds which target demethylase enzymatic activity may be efficacious in treating both ER-positive and endocrine therapy-resistant disease.


Assuntos
Neoplasias da Mama/enzimologia , Histona Desmetilases com o Domínio Jumonji/metabolismo , Receptores de Estrogênio/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Histona Desmetilases com o Domínio Jumonji/fisiologia , Células MCF-7 , Elementos de Resposta , Transdução de Sinais
9.
BMC Cancer ; 15: 9, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25592066

RESUMO

BACKGROUND: Androgens drive the onset and progression of prostate cancer (PCa) via androgen receptor (AR) signalling. The principal treatment for PCa is androgen deprivation therapy, although the majority of patients eventually develop a lethal castrate-resistant form of the disease, where despite low serum testosterone levels AR signalling persists. Advanced PCa often has hyper-activated RAS/ERK1/2 signalling thought to be due to loss of function of key negative regulators of the pathway, the details of which are not fully understood. METHODS: We recently carried out a genome-wide study and identified a subset of 226 novel androgen-regulated genes (PLOS ONE 6:e29088, 2011). In this study we have meta-analysed this dataset with genes and pathways frequently mutated in PCa to identify androgen-responsive regulators of the RAS/ERK1/2 pathway. RESULTS: We find the PTGER4 and TSPYL2 genes are up-regulated by androgen stimulation and the ADCY1, OPKR1, TRIB1, SPRY1 and PTPRR are down-regulated by androgens. Further characterisation of PTPRR protein in LNCaP cells revealed it is an early and direct target of the androgen receptor which negatively regulates the RAS/ERK1/2 pathway and reduces cell proliferation in response to androgens. CONCLUSION: Our data suggest that loss of PTPRR in clinical PCa is one factor that might contribute to activation of the RAS/ERK1/2 pathway.


Assuntos
Androgênios/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neoplasias da Próstata/genética , Proteínas Tirosina Fosfatases Classe 7 Semelhantes a Receptores/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Bases de Dados Genéticas , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Neoplasias da Próstata/metabolismo , Proteínas Tirosina Fosfatases Classe 7 Semelhantes a Receptores/metabolismo , Receptores Androgênicos/metabolismo
10.
Nucleic Acids Res ; 41(14): 6892-904, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23723241

RESUMO

The importance of the estrogen receptor (ER) in breast cancer (BCa) development makes it a prominent target for therapy. Current treatments, however, have limited effectiveness, and hence the definition of new therapeutic targets is vital. The ER is a member of the nuclear hormone receptor superfamily of transcription factors that requires co-regulator proteins for complete regulation. Emerging evidence has implicated a small number of histone methyltransferase (HMT) and histone demethylase (HDM) enzymes as regulators of ER signalling, including the histone H3 lysine 9 tri-/di-methyl HDM enzyme KDM4B. Two recent independent reports have demonstrated that KDM4B is required for ER-mediated transcription and depletion of the enzyme attenuates BCa growth in vitro and in vivo. Here we show that KDM4B has an overarching regulatory role in the ER signalling cascade by controlling expression of the ER and FOXA1 genes, two critical components for maintenance of the estrogen-dependent phenotype. KDM4B interacts with the transcription factor GATA-3 in BCa cell lines and directly co-activates GATA-3 activity in reporter-based experiments. Moreover, we reveal that KDM4B recruitment and demethylation of repressive H3K9me3 marks within upstream regulatory regions of the ER gene permits binding of GATA-3 to drive receptor expression. Ultimately, our findings confirm the importance of KDM4B within the ER signalling cascade and as a potential therapeutic target for BCa treatment.


Assuntos
Histona Desmetilases com o Domínio Jumonji/metabolismo , Receptores de Estrogênio/metabolismo , Transdução de Sinais , Linhagem Celular , Fator de Transcrição GATA3/metabolismo , Regulação da Expressão Gênica , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Histonas/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/fisiologia , Células MCF-7 , Receptores de Estrogênio/genética , Elementos Reguladores de Transcrição
11.
Nucleic Acids Res ; 41(8): 4433-46, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23435229

RESUMO

The androgen receptor (AR) is a key molecule involved in prostate cancer (PC) development and progression. Post-translational modification of the AR by co-regulator proteins can modulate its transcriptional activity. To identify which demethylases might be involved in AR regulation, an siRNA screen was performed to reveal that the demethylase, KDM4B, may be an important co-regulator protein. KDM4B enzymatic activity is required to enhance AR transcriptional activity; however, independently of this activity, KDM4B can enhance AR protein stability via inhibition of AR ubiquitination. Importantly, knockdown of KDM4B in multiple cell lines results in almost complete depletion of AR protein levels. For the first time, we have identified KDM4B to be an androgen-regulated demethylase enzyme, which can influence AR transcriptional activity not only via demethylation activity but also via modulation of ubiquitination. Together, these findings demonstrate the close functional relationship between AR and KDM4B, which work together to amplify the androgen response. Furthermore, KDM4B expression in clinical PC specimens positively correlates with increasing cancer grade (P < 0.001). Consequently, KDM4B is a viable therapeutic target in PC.


Assuntos
Histona Desmetilases com o Domínio Jumonji/metabolismo , Receptores Androgênicos/metabolismo , Androgênios/farmacologia , Animais , Linhagem Celular , Proliferação de Células , Regulação da Expressão Gênica , Histonas/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/fisiologia , Masculino , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/patologia , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , Transdução de Sinais , Transcrição Gênica , Ubiquitinação
12.
J Biol Chem ; 288(45): 32641-32650, 2013 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-24056413

RESUMO

The androgen receptor (AR), a member of the nuclear receptor family, is a transcription factor involved in prostate cell growth, homeostasis, and transformation. AR is a key protein in growth and development of both normal and malignant prostate, making it a common therapeutic target in prostate cancer. AR is regulated by an interplay of multiple post-translational modifications including ubiquitination. We and others have shown that the AR is ubiquitinated by a number of E3 ubiquitin ligases, including MDM2, CHIP, and NEDD4, which can result in its proteosomal degradation or enhanced transcriptional activity. As ubiquitination of AR causes a change in AR activity or stability and impacts both survival and growth of prostate cancer cells, deubiquitination of these sites has an equally important role. Hence, deubiquitinating enzymes could offer novel therapeutic targets. We performed an siRNA screen to identify deubiquitinating enzymes that regulate AR; in that screen ubiquitin-specific protease 12 (Usp12) was identified as a novel positive regulator of AR. Usp12 is a poorly characterized protein with few known functions and requires the interaction with two cofactors, Uaf-1 and WDR20, for its enzymatic activity. In this report we demonstrate that Usp12, in complex with Uaf-1 and WDR20, deubiquitinates the AR to enhance receptor stability and transcriptional activity. Our data show that Usp12 acts in a pro-proliferative manner by stabilizing AR and enhancing its cellular function.


Assuntos
Proliferação de Células , Proteínas de Neoplasias/metabolismo , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Ubiquitina Tiolesterase/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Animais , Células COS , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Chlorocebus aethiops , Humanos , Masculino , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Neoplasias da Próstata/genética , Estabilidade Proteica , Receptores Androgênicos/genética , Ubiquitina Tiolesterase/genética , Ubiquitina-Proteína Ligases/genética
13.
BMC Cancer ; 14: 977, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25519703

RESUMO

BACKGROUND: Although chemotherapy for prostate cancer (PCa) can improve patient survival, some tumours are chemo-resistant. Tumour molecular profiles may help identify the mechanisms of drug action and identify potential prognostic biomarkers. We performed in vivo transcriptome profiling of pre- and post-treatment prostatic biopsies from patients with advanced hormone-naive prostate cancer treated with docetaxel chemotherapy and androgen deprivation therapy (ADT) with an aim to identify the mechanisms of drug action and identify prognostic biomarkers. METHODS: RNA sequencing (RNA-Seq) was performed on biopsies from four patients before and ~22 weeks after docetaxel and ADT initiation. Gene fusion products and differentially-regulated genes between treatment pairs were identified using TopHat and pathway enrichment analyses undertaken. Publically available datasets were interrogated to perform survival analyses on the gene signatures identified using cBioportal. RESULTS: A number of genomic rearrangements were identified including the TMPRSS2/ERG fusion and 3 novel gene fusions involving the ETS family of transcription factors in patients, both pre and post chemotherapy. In total, gene expression analyses showed differential expression of at least 2 fold in 575 genes in post-chemotherapy biopsies. Of these, pathway analyses identified a panel of 7 genes (ADAM7, FAM72B, BUB1B, CCNB1, CCNB2, TTK, CDK1), including a cell cycle-related geneset, that were differentially-regulated following treatment with docetaxel and ADT. Using cBioportal to interrogate the MSKCC-Prostate Oncogenome Project dataset we observed a statistically-significant reduction in disease-free survival of patients with tumours exhibiting alterations in gene expression of the above panel of 7 genes (p = 0.015). CONCLUSIONS: Here we report on the first "real-time" in vivo RNA-Seq-based transcriptome analysis of clinical PCa from pre- and post-treatment TRUSS-guided biopsies of patients treated with docetaxel chemotherapy plus ADT. We identify a chemotherapy-driven PCa transcriptome profile which includes the down-regulation of important positive regulators of cell cycle progression. A 7 gene signature biomarker panel has also been identified in high-risk prostate cancer patients to be of prognostic value. Future prospective study is warranted to evaluate the clinical value of this panel.


Assuntos
Perfilação da Expressão Gênica , Neoplasias da Próstata/genética , Neoplasias da Próstata/mortalidade , Transcriptoma , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biópsia , Biologia Computacional , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Masculino , Gradação de Tumores , Estadiamento de Neoplasias , Prognóstico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/terapia
14.
Front Mol Biosci ; 11: 1390711, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737334

RESUMO

Despite an array of hypothesised implications for health, disease, and therapeutic development, antibodies against the non-human sialic acid N-glycolylneuraminic acid (Neu5Gc) remain a subject of much debate. This systematic review of 114 publications aimed to generate a comprehensive overview of published studies in this field, addressing both the reported prevalence of anti-Neu5Gc antibodies in the human population and whether experimental variation accounts for the conflicting reports about the extent of this response. Absolute titres of anti-Neu5Gc antibodies, the reported prevalence of these antibodies, and the individual variation observed within experiments were analysed and grouped according to biological context ('inflammation', 'xenotransplantation', 'biotherapeutic use', 'cancer', and 'healthy populations'), detection method, target epitope selection, and choice of blocking agent. These analyses revealed that the experimental method had a notable impact on both the reported prevalence and absolute titres of anti-Neu5Gc antibodies in the general population, thereby limiting the ability to ascribe reported trends to genuine biological differences or the consequence of experimental design. Overall, this review highlights important knowledge gaps in the study of antibodies against this important xenoautoantigen and the need to establish a standardised method for their quantification if the extent of the importance of Neu5Gc in human health is to be fully understood.

15.
Commun Biol ; 7(1): 276, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448753

RESUMO

Immune checkpoint blockade has yet to produce robust anti-cancer responses for prostate cancer. Sialyltransferases have been shown across several solid tumours, including breast, melanoma, colorectal and prostate to promote immune suppression by synthesising sialoglycans, which act as ligands for Siglec receptors. We report that ST3 beta-galactoside alpha-2,3-sialyltransferase 1 (ST3Gal1) levels negatively correlate with androgen signalling in prostate tumours. We demonstrate that ST3Gal1 plays an important role in modulating tumour immune evasion through the synthesises of sialoglycans with the capacity to engage the Siglec-7 and Siglec-9 immunoreceptors preventing immune clearance of cancer cells. Here, we provide evidence of the expression of Siglec-7/9 ligands and their respective immunoreceptors in prostate tumours. These interactions can be modulated by enzalutamide and may maintain immune suppression in enzalutamide treated tumours. We conclude that the activity of ST3Gal1 is critical to prostate cancer anti-tumour immunity and provide rationale for the use of glyco-immune checkpoint targeting therapies in advanced prostate cancer.


Assuntos
Feniltioidantoína , Neoplasias da Próstata , beta-Galactosídeo alfa-2,3-Sialiltransferase , Masculino , Humanos , Neoplasias da Próstata/tratamento farmacológico , Benzamidas/farmacologia , Nitrilas , Ligantes
16.
Prostate ; 73(14): 1529-37, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23818154

RESUMO

BACKGROUND: This study investigated whether the increase in serum prostate specific antigen (PSA) typically seen during male urinary tract infection (UTI) is incidental or reflects an innate defence mechanism of the prostate. The protective roles of the whey-acid-motif-4-disulphide core (WFDC) proteins, secretory leukoproteinase inhibitor (SLPI) and WFDC2, in the prostate were also examined. METHODS: UTI recurrence was assessed retrospectively in men following initial UTI by patient interview. PSA, SLPI, and WFDC2 gene expression were assessed using biopsy samples. LNCaP and DU145 in vitro prostate cell models were utilized to assess the effects of an Escherichia coli challenge on PSA and WFDC gene expression, and bacterial invasion of the prostate epithelium. The effects of PSA on WFDC antimicrobial properties were studied using recombinant peptides and time-kill assays. RESULTS: Men presenting with PSA >4 ng/ml at initial UTI were less likely to have recurrent (r) UTI than those with PSA <4 ng/ml [2/15 (13%) vs. 7/10 (70%), P < 0.01]. Genes encoding PSA, SLPI and WFDC2, were expressed in prostatic epithelium, and the PSA and SLPI proteins co-localized in vivo. Challenging LNCaP (PSA-positive) cells with E. coli increased PSA, SLPI, and WFDC2 gene expression (P < 0.05), and PSA synthesis (P < 0.05), and reduced bacterial invasion. Pre-incubation of DU145 (PSA-negative) cells with PSA also decreased bacterial invasion. In vitro incubation of recombinant SLPI and WFDC2 with PSA resulted in peptide proteolysis and increased E. coli killing. CONCLUSIONS: Increased PSA during UTI appears protective against rUTI and in vitro is linked to proteolysis of WFDC proteins supporting enhanced prostate innate defences.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Antígeno Prostático Específico , Próstata/imunologia , Infecções Urinárias , Idoso , Epitélio/imunologia , Escherichia coli/isolamento & purificação , Escherichia coli/fisiologia , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/fisiopatologia , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Masculino , Pessoa de Meia-Idade , Proteínas do Leite/imunologia , Antígeno Prostático Específico/genética , Antígeno Prostático Específico/imunologia , Proteínas/imunologia , Recidiva , Estudos Retrospectivos , Inibidor Secretado de Peptidases Leucocitárias/imunologia , Infecções Urinárias/imunologia , Infecções Urinárias/microbiologia , Infecções Urinárias/fisiopatologia , Proteína 2 do Domínio Central WAP de Quatro Dissulfetos
17.
BJU Int ; 111(4): 672-82, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22897391

RESUMO

UNLABELLED: WHAT'S KNOWN ON THE SUBJECT? AND WHAT DOES THE STUDY ADD?: Androgen-ablation therapy (AAT) and chemotherapy are commonly used to treat incurable prostate cancer. To improve outcome, there is major on-going research to develop more effective treatments with less toxicity. Autophagy has been suggested from previous studies to play a potential role in cell survival and may be associated with resistance to chemotherapy. Autophagy is known to be upregulated by nutrient starvation or AAT in prostate cancer. However, its functional impact is not fully known. The present study describes the potential synergism between the blockade of autophagy and AAT alone or AAT combined with taxane chemotherapy. Hence, future combined treatment options are warranted to further investigate the clinical impact of autophagy suppression as a treatment strategy. OBJECTIVE: To study the cellular effects of the anti-androgen bicalutamide on autophagy and its potential impact on response to androgen-ablation therapy (AAT) alone or combined with docetaxel chemotherapy in human prostate cancer LNCaP cells. MATERIALS AND METHODS: LNCaP cells were treated with bicalutamide ± docetaxel, and cellular effects were assayed: lipidated LC3 (a microtubule-associated protein) for autophagy and its trafficking to fuse with lysosome; flow cytometry using propidium iodide or caspase 3 for cell death; and sulforhodamine B assay for cell growth. RESULTS: Bicalutamide treatment enhanced autophagy in LNCaP cells with increased level of autophagosome coupled with an altered cellular morphology reminiscent of neuroendocrine differentiation. Consistent with the literature on the interaction between androgen receptor activation and taxane chemotherapy, bicalutamide diminished docetaxel mediated cytotoxicity. Significantly, pharmacological inhibition of autophagy with 3-methyladenine significantly enhanced the efficacy cell kill mediated by AAT ± docetaxel. CONCLUSION: Autophagy associated with bicalutamide treatment in LNCaP cells may have a pro-survival effect and strategy to modulate autophagy may have a potential therapeutic value.


Assuntos
Anilidas/farmacologia , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Nitrilas/farmacologia , Taxoides/farmacologia , Compostos de Tosil/farmacologia , Antagonistas de Androgênios/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Autofagia/fisiologia , Western Blotting , Linhagem Celular Tumoral/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Docetaxel , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Masculino , Microscopia Confocal , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , RNA Interferente Pequeno/análise , Sensibilidade e Especificidade
18.
Nucleic Acids Res ; 39(4): 1266-79, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20959290

RESUMO

The androgen receptor (AR) is a member of the nuclear hormone receptor family of transcription factors that plays a critical role in regulating expression of genes involved in prostate development and transformation. Upon hormone binding, the AR associates with numerous co-regulator proteins that regulate the activation status of target genes via flux to the post-translational modification status of histones and the receptor. Here we show that the AR interacts with and is directly methylated by the histone methyltransferase enzyme SET9. Methylation of the AR on lysine 632 is necessary for enhancing transcriptional activity of the receptor by facilitating both inter-domain communication between the N- and C-termini and recruitment to androgen-target genes. We also show that SET9 is pro-proliferative and anti-apoptotic in prostate cancer cells and demonstrates up-regulated nuclear expression in prostate cancer tissue. In all, our date indicate a new mechanism of AR regulation that may be therapeutically exploitable for prostate cancer treatment.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Neoplasias da Próstata/enzimologia , Receptores Androgênicos/metabolismo , Transporte Ativo do Núcleo Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células , Histonas/metabolismo , Humanos , Lisina/metabolismo , Masculino , Metilação , Antígeno Prostático Específico/genética , Receptores Androgênicos/química , Ativação Transcricional
19.
Ren Fail ; 35(10): 1387-91, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23991628

RESUMO

There is considerable interest in the use of multi-potent stem cells in kidney tissue regeneration. We studied if spermatogonial stem cells have the ability to undergo kidney differentiation. Spermatogonial stem cell differentiation was induced using in vitro and ex vivo co-culture techniques. Conditioned media from human kidney fibroblasts induced the expression of epithelial and endothelial lineages in spermatogonial stem cells, consistent with nephrogenesis. Furthermore, we showed that these cells up-regulated renal tubular-specific markers alkaline phosphatase, mineralocorticoid receptor, renal epithelial sodium channel and sodium-glucose transporter-2 (p<0.05). GFP-labeled spermatogonial stem cells were engrafted into metanephric kidney organ cultures harvested from E12.5 mouse embryos. After 5 days of organ culture, focal anti-GFP staining was detectable in all inoculated kidneys demonstrating integration of spermatogonial stem cells into the developing kidney (p<0.01). Histological assessment showed early nephron-like architecture. In summary, we show that spermatogonial stem cells have the potential to generate renal tissue and lay the foundations for further investigations into a novel therapeutic approach for renal insufficiency.


Assuntos
Células-Tronco Adultas/fisiologia , Diferenciação Celular , Rim/citologia , Regeneração , Animais , Fibroblastos/fisiologia , Humanos , Rim/embriologia , Rim/fisiologia , Camundongos , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Comunicação Parácrina
20.
Oncogene ; 42(32): 2417-2427, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37438470

RESUMO

A key challenge in the clinical management and cause of treatment failure of prostate cancer (PCa) is its molecular, cellular and clinical heterogeneity. Modelling systems that fully recapitulate clinical diversity and resistant phenotypes are urgently required for the development of successful personalised PCa therapies. The advent of the three-dimensional (3D) organoid model has revolutionised preclinical cancer research through reflecting heterogeneity and offering genomic and environmental manipulation that has opened up unparalleled opportunities for applications in disease modelling, high-throughput drug screening and precision medicine. Despite these remarkable achievements of organoid technology, several shortcomings in emulating the complex tumor microenvironment and dynamic process of metastasis as well as the epigenome profile limit organoids achieving true in vivo functionality. Technological advances in tissue engineering have enabled the development of innovative tools to facilitate the design of improved 3D cancer models. In this review, we highlight the current in vitro 3D PCa models with a special focus on organoids and discuss engineering approaches to create more physiologically relevant PCa organoid models and maximise their translational relevance that ultimately will help to realise the transformational power of precision medicine.


Assuntos
Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Organoides/patologia , Medicina de Precisão , Microambiente Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa