Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 16(5): 3221-9, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27080194

RESUMO

Manipulating properties of matter at the nanoscale is the essence of nanotechnology, which has enabled the realization of quantum dots, nanotubes, metamaterials, and two-dimensional materials with tailored electronic and optical properties. Two-dimensional semiconductors have revealed promising perspectives in nanotechnology. However, the tunability of their physical properties is challenging for semiconductors studied until now. Here we show the ability of morphological manipulation strategies, such as nanotexturing or, at the limit, important surface roughness, to enhance light absorption and the luminescent response of atomically thin indium selenide nanosheets. Besides, quantum-size confinement effects make this two-dimensional semiconductor to exhibit one of the largest band gap tunability ranges observed in a two-dimensional semiconductor: from infrared, in bulk material, to visible wavelengths, at the single layer. These results are relevant for the design of new optoelectronic devices, including heterostructures of two-dimensional materials with optimized band gap functionalities and in-plane heterojunctions with minimal junction defect density.

2.
Nanomaterials (Basel) ; 10(7)2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32630678

RESUMO

Nanocrystals surface chemistry engineering offers a direct approach to tune charge carrier dynamics in nanocrystals-based photodetectors. For this purpose, we have investigated the effects of altering the surface chemistry of thin films of CsPbBr3 perovskite nanocrystals produced by the doctor blading technique, via solid state ligand-exchange using 3-mercaptopropionic acid (MPA). The electrical and electro-optical properties of photovoltaic and photoconductor devices were improved after the MPA ligand exchange, mainly because of a mobility increase up to 5 × 10-3 cm 2 / Vs . The same technology was developed to build a tandem photovoltaic device based on a bilayer of PbS quantum dots (QDs) and CsPbBr3 perovskite nanocrystals. Here, the ligand exchange was successfully carried out in a single step after the deposition of these two layers. The photodetector device showed responsivities around 40 and 20 mA/W at visible and near infrared wavelengths, respectively. This strategy can be of interest for future visible-NIR cameras, optical sensors, or receivers in photonic devices for future Internet-of-Things technology.

3.
Nanoscale ; 11(4): 1978-1987, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30644959

RESUMO

Surface engineering of nanomaterials is a promising tool towards the design of new materials for conversion of solar energy into chemical energy. In this work, we examine the influence of ligand exchange on the photocatalytic performance of solution-processed PbS films. We test different ligands such as oleylamine (OAm), 1,2-ethanedithiol (EDT), 3-mercaptopropionic acid (MPA) and tetrabutylammonium iodide (TBAI). The study demonstrates that PbS films capped with MPA and EDT exhibit 3.5-fold enhanced photocatalytic performance for the photodecomposition of methyl orange upon sunlight exposure. Both band energy alignment and charge carrier transport have a strong impact on the generation of reactive oxygen species (ROS), which play a key role in the photodecomposition process. Moreover, the stability and reusability of the photocatalysts are clearly improved after ligand exchange. We prove how both MPA and EDT provide much more stability to PbS QD films to operate very efficiently up to 8 cycles of photocatalysis. As observed in XPS, the oxidation of PbS is prevented after ligand exchange. We demonstrate how surface chemistry engineering of solution-processed QD films can open a new approach towards the design of highly efficient and stable visible-light-driven photocatalysts, which paves the way to low cost and large area fabrication of high-performance photocatalytic devices.

4.
ACS Omega ; 3(8): 9798-9804, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30198002

RESUMO

In this work, SiO2 nanoparticles (NPs) were integrated into the mesoporous TiO2 layer of a perovskite solar cell to investigate their effect on cell performance. Different concentrations of SiO2/ethanol have been combined in TiO2/ethanol to prepare pastes for the fabrication of the mesoporous layer with which perovskite solar cells have been fabricated. Addition of SiO2 NPs of 50 and 100 nm sizes produces an enhancement of cell performance mainly because of an improvement of the photocurrent. This increment is in good agreement with the theoretical predictions based on light scattering induced by dielectric SiO2 NPs. The samples using modified scaffolds with NPs also present a significant lower current-potential hysteresis indicating that NP incorporation also affects the ion accumulation at the perovskite interface, providing an additional beneficial effect. The results stress the importance of the appropriated management of the optical properties on further optimization of perovskite solar cell technology.

5.
Nanomaterials (Basel) ; 8(9)2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30200230

RESUMO

Control of quantum-dot (QD) surface chemistry offers a direct approach for the tuning of charge-carrier dynamics in photoconductors based on strongly coupled QD solids. We investigate the effects of altering the surface chemistry of PbS QDs in such QD solids via ligand exchange using 3-mercaptopropionic acid (MPA) and tetrabutylammonium iodide (TBAI). The roll-to-roll compatible doctor-blade technique was used for the fabrication of the QD solid films as the photoactive component in photoconductors and field-effect phototransistors. The ligand exchange of the QD solid film with MPA yields superior device performance with higher photosensitivity and detectivity, which is due to less dark current and lower noise level as compared to ligand exchange with TBAI. In both cases, the mechanism responsible for photoconductivity is related to trap sensitization of the QD solid, in which traps are responsible of high photoconductive gain values, but slow response times under very low incident optical power (<1 pW). At medium⁻high incident optical powers (>100 pW), where traps are filled, both MPA- and TBAI-treated photodevices exhibit similar behavior, characterized by lower responsivity and faster response time, as limited by the mobility in the QD solid.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa