Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Magn Reson Med ; 89(6): 2270-2280, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36705075

RESUMO

PURPOSE: The aim of this paper is to show that geometrical criteria for designing multishell q $$ q $$ -space sampling procedures do not necessarily translate into reconstruction matrices with high figures of merit commonly used in the compressed sensing theory. In addition, we show that a well-known method for visiting k-space in radial three-dimensional acquisitions, namely, the Spiral Phyllotaxis, is a competitive initialization for the optimization of our nonconvex objective function. THEORY AND METHODS: We propose the gradient design method WISH (WeIghting SHells) which uses an objective function that accounts for weighted distances between gradients within M-tuples of consecutive shells, with M $$ M $$ ranging between 1 and the maximum number of shells S $$ S $$ . All the M $$ M $$ -tuples share the same weight ω M $$ {\omega}_M $$ . The objective function is optimized for a sample of these weights, using Spiral Phyllotaxis as initialization. State-of-the-art General Electrostatic Energy Minimization (GEEM) and Spherical Codes (SC) were used for comparison. For the three methods, reconstruction matrices of the attenuation signal using MAP-MRI were tested using figures of merit borrowed from the Compressed Sensing theory (namely, Restricted Isometry Property -RIP- and Coherence); we also tested the gradient design using a geometric criterion based on Voronoi cells. RESULTS: For RIP and Coherence, WISH got better results in at least one combination of weights, whilst the criterion based on Voronoi cells showed an unrelated pattern. CONCLUSION: The versatility provided by WISH is supported by better results. Optimization in the weight parameter space is likely to provide additional improvements. For a practical design with an intermediate number of gradients, our results recommend to carry out the methodology here used to determine the appropriate gradient table.


Assuntos
Algoritmos , Aumento da Imagem , Aumento da Imagem/métodos , Encéfalo , Imageamento por Ressonância Magnética/métodos , Difusão , Processamento de Imagem Assistida por Computador/métodos
2.
Med Image Anal ; 84: 102728, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36542908

RESUMO

Hybrid Diffusion Imaging (HYDI) was one of the first attempts to use multi-shell samplings of the q-space to infer diffusion properties beyond Diffusion Tensor Imaging (DTI) or High Angular Resolution Diffusion Imaging (HARDI). HYDI was intended as a flexible protocol embedding both DTI (for lower b-values) and HARDI (for higher b-values) processing, as well as Diffusion Spectrum Imaging (DSI) when the entire data set was exploited. In the latter case, the spherical sampling of the q-space is re-gridded by interpolation to a Cartesian lattice whose extent covers the range of acquired b-values, hence being acquisition-dependent. The Discrete Fourier Transform (DFT) is afterwards used to compute the corresponding Cartesian sampling of the Ensemble Average Propagator (EAP) in an entirely non-parametric way. From this lattice, diffusion markers such as the Return To Origin Probability (RTOP) or the Mean Squared Displacement (MSD) can be numerically estimated. We aim at re-formulating this scheme by means of a Fourier Transform encoding matrix that eliminates the need for q-space re-gridding at the same time it preserves the non-parametric nature of HYDI-DSI. The encoding matrix is adaptively designed at each voxel according to the underlying DTI approximation, so that an optimal sampling of the EAP can be pursued without being conditioned by the particular acquisition protocol. The estimation of the EAP is afterwards carried out as a regularized Quadratic Programming (QP) problem, which allows to impose positivity constraints that cannot be trivially embedded within the conventional HYDI-DSI. We demonstrate that the definition of the encoding matrix in the adaptive space allows to analytically (as opposed to numerically) compute several popular descriptors of diffusion with the unique source of error being the cropping of high frequency harmonics in the Fourier analysis of the attenuation signal. They include not only RTOP and MSD, but also Return to Axis/Plane Probabilities (RTAP/RTPP), which are defined in terms of specific spatial directions and are not available with the former HYDI-DSI. We report extensive experiments that suggest the benefits of our proposal in terms of accuracy, robustness and computational efficiency, especially when only standard, non-dedicated q-space samplings are available.


Assuntos
Encéfalo , Imagem de Tensor de Difusão , Humanos , Imagem de Tensor de Difusão/métodos , Encéfalo/diagnóstico por imagem , Algoritmos , Imagem de Difusão por Ressonância Magnética/métodos , Imagem Multimodal , Processamento de Imagem Assistida por Computador/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa