Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biodegradation ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37966620

RESUMO

This study proposes the was to evaluate the stability and methane production with organic load differents in an upflow anaerobic sludge blanket reactor (UASB) treating swine wastewater by methods of multivariate analysis. Four organic loads were used with average hydraulic holding times of one day. The methods of data analysis of linear regression, Pearson correlation, principal component analysis and hierarchical clustering analysis were used for understanding stability and methane production in the reactor. The highest concentrations of bicarbonate alkalinity of 683 mg L-1 CaCO3 and total volatile acids of 1418 mg L-1 HAc with maximum organic loading applied were obtained. The optimal stability conditions occurred at an intermediate and partial alkalinity ratio between 0.24 and 0.25 observed in initial phases with a chemical oxygen demand (COD) removal of 47-57%. Maximum methane production was 9.0 L CH4 d-1 observed with linear regression positive and occurred at the highest applied organic load, corresponding to the highest COD removal efficiency and increased microbial biomass. Positive and negative correlation between functional stability in anaerobic digestion showed regular activity between acids, alkalinity and organic matter removal. This fact was also proven by the analysis of principal components that showed three components responsible for explaining 83.2% of the data variability, and the alkalinity, organic matter influent and organic acids had the greatest effects on the stability of the UASB reactor. Hierarchical clusters detected the formation of five groupings with a similarity of 50.1%, indicating that temperature and pH were variables with unitary influences on data dimensionality.

2.
J Environ Manage ; 262: 110386, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32250834

RESUMO

The multivariate analysis to optimize the parameters of wastewater is essential to reduce costs. The aim of this study was to evaluate the use of multivariate and conventional analysis in biological system composed by upflow anaerobic sludge blanket (UASB), submerged aerated biological filters (SABF) and horizontal subsurface flow constructed wetland (HSSF-CW) reactors in the organic stabilization of swine wastewater (SW). Four loads were used in the system with alteration by COD concentration of untreated SW, and the data were evaluated by principal components (PCA). The average efficiency of COD and BOD removal increased from 45% in phase I to 67% in phase IV in the UASB, SABF and HSSF-CW reactors. The principal component analysis promoted the reduction of 13 original variables to 5, 8 and 5 principal components in the UASB, SABF and HSSF-CW reactors, respectively, optimizing the dynamics of interpretation of the data that influenced the most the stability of the wastewater system across the four phases. There was a strong negative effect of oxygen concentrations in the SABF reactor in relation to organic variables, optimizing the biological mechanisms of the HSSF-CW and, therefore, enabling better decision making and cost reduction with analysis at treatment plants.


Assuntos
Esgotos , Águas Residuárias , Anaerobiose , Animais , Reatores Biológicos , Análise de Componente Principal , Suínos , Eliminação de Resíduos Líquidos , Áreas Alagadas
3.
Chemosphere ; 260: 127516, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32682131

RESUMO

This study aims to evaluate the dynamics and their ecological risks for aquatic species of lipid regulator, nervous stimulant, anti-inflammatory and endocrine disrupters in an upflow anaerobic sludge blanket (UASB), submerged aerated biological filters (SABF) and horizontal subsurface flow constructed wetland (HSSF-CW) reactors that treat swine wastewater. Four organic loads of swine wastewater (SW) were used according to changing the chemical oxygen demand. 13 contaminants were quantified, standing out the endocrine disruptors, lipid regulator and anti-inflammatory. In phase III, 8318.4 ng L-1 of 4-ocylphenol was found at the influent of the UASB reactor and removal from 1877.1 to 13.7 ng L-1 in the bisphenol A system. With the maximum organic load, there was a reduction among all the treatment units, with concentrations between 1877.1 and 13.7 ng L-1 of bisphenol A and had naproxen removal of 94.5% and 2,7 ng L-1 after treating phases II and III. It was found that 24.6% of the contaminants presented a high ecological risk, with maximum values of 27.4 (4-nonylphenol, phase II), 24.6 and 5.9 (17ß-estradiol, phase IV and I, respectively), 13.4 (4-ocylphenol, phase III) and 4.4 (estrone, phase IV) in the influent system. The reduction of ecological risk potentials was optimized by SABF and HSSF-CW. The effect oxygen availability and microbiological activities optimized the reduction of ecological risks on zebrafish (Danio rerio) and cnidarian (Hydra attenuata) species, moreover, the reduction of mass flows and ecological risks of the emerging contaminants are associated with the use of biological reactors in series and organic stabilizations.


Assuntos
Reatores Biológicos , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/análise , Anaerobiose , Animais , Compostos Benzidrílicos/análise , Compostos Benzidrílicos/isolamento & purificação , Análise da Demanda Biológica de Oxigênio , Ecologia , Disruptores Endócrinos/análise , Estradiol , Estrona , Fenóis/análise , Fenóis/isolamento & purificação , Esgotos , Suínos , Eliminação de Resíduos Líquidos/normas , Áreas Alagadas , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa