Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Adv Biol (Weinh) ; 8(1): e2300186, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37607124

RESUMO

Mitochondria are required for energy production and even give brown adipose tissue (BAT) its characteristic color due to their high iron content and abundance. The physiological function and bioenergetic capacity of mitochondria are connected to the structure, folding, and organization of its inner-membrane cristae. During the aging process, mitochondrial dysfunction is observed, and the regulatory balance of mitochondrial dynamics is often disrupted, leading to increased mitochondrial fragmentation in aging cells. Therefore, it is hypothesized that significant morphological changes in BAT mitochondria and cristae will be present with aging. A quantitative 3D electron microscopy approach is developed to map cristae network organization in mouse BAT to test this hypothesis. Using this methodology, the 3D morphology of mitochondrial cristae is investigated in adult (3-month) and aged (2-year) murine BAT tissue via serial block face-scanning electron microscopy (SBF-SEM) and 3D reconstruction software for manual segmentation, analysis, and quantification. Upon investigation, an increase is found in mitochondrial volume, surface area, and complexity and decreased sphericity in aged BAT, alongside significant decreases in cristae volume, area, perimeter, and score. Overall, these data define the nature of the mitochondrial structure in murine BAT across aging.


Assuntos
Tecido Adiposo Marrom , Membranas Mitocondriais , Animais , Camundongos , Tecido Adiposo Marrom/metabolismo , Mitocôndrias/metabolismo , Metabolismo Energético/fisiologia , Envelhecimento
2.
Adv Biol (Weinh) ; 7(6): e2200221, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36869426

RESUMO

Various intracellular degradation organelles, including autophagosomes, lysosomes, and endosomes, work in tandem to perform autophagy, which is crucial for cellular homeostasis. Altered autophagy contributes to the pathophysiology of various diseases, including cancers and metabolic diseases. This paper aims to describe an approach to reproducibly identify and distinguish subcellular structures involved in macroautophagy. Methods are provided that help avoid common pitfalls. How to distinguish between lysosomes, lipid droplets, autolysosomes, autophagosomes, and inclusion bodies are also discussed. These methods use transmission electron microscopy (TEM), which is able to generate nanometer-scale micrographs of cellular degradation components in a fixed sample. Serial block face-scanning electron microscopy is also used to visualize the 3D morphology of degradation machinery using the Amira software. In addition to TEM and 3D reconstruction, other imaging techniques are discussed, such as immunofluorescence and immunogold labeling, which can be used to classify cellular organelles, reliably and accurately. Results show how these methods may be used to accurately quantify cellular degradation machinery under various conditions, such as treatment with the endoplasmic reticulum stressor thapsigargin or ablation of the dynamin-related protein 1.


Assuntos
Imageamento Tridimensional , Lisossomos , Microscopia Eletrônica de Transmissão , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Autofagia/fisiologia , Retículo Endoplasmático
3.
bioRxiv ; 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37577723

RESUMO

Mitochondria are required for energy production and even give brown adipose tissue (BAT) its characteristic color due to their high iron content and abundance. The physiological function and bioenergetic capacity of mitochondria are connected to the structure, folding, and organization of its inner-membrane cristae. During the aging process, mitochondrial dysfunction is observed, and the regulatory balance of mitochondrial dynamics is often disrupted, leading to increased mitochondrial fragmentation in aging cells. Therefore, we hypothesized that significant morphological changes in BAT mitochondria and cristae would be present with aging. We developed a quantitative three-dimensional (3D) electron microscopy approach to map cristae network organization in mouse BAT to test this hypothesis. Using this methodology, we investigated the 3D morphology of mitochondrial cristae in adult (3-month) and aged (2-year) murine BAT tissue via serial block face-scanning electron microscopy (SBF-SEM) and 3D reconstruction software for manual segmentation, analysis, and quantification. Upon investigation, we found increases in mitochondrial volume, surface area, and complexity and decreased sphericity in aged BAT, alongside significant decreases in cristae volume, area, perimeter, and score. Overall, these data define the nature of the mitochondrial structure in murine BAT across aging.

4.
Mol Psychiatry ; 14(1): 71-85, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17938636

RESUMO

Attention-deficit/hyperactivity disorder (ADHD) is a common psychiatric disorder in which different genetic and environmental susceptibility factors are involved. Several lines of evidence support the view that at least 30% of ADHD patients diagnosed in childhood continue to suffer the disorder during adulthood and that genetic risk factors may play an essential role in the persistence of the disorder throughout lifespan. Genetic, biochemical and pharmacological studies support the idea that the serotonin system participates in the etiology of ADHD. Based on these data, we aimed to analyze single nucleotide polymorphisms across 19 genes involved in the serotoninergic neurotransmission in a clinical sample of 451 ADHD patients (188 adults and 263 children) and 400 controls using a population-based association study. Several significant associations were found after correcting for multiple testing: (1) the DDC gene was strongly associated with both adulthood (P=0.00053; odds ratio (OR)=2.17) and childhood ADHD (P=0.0017; OR=1.90); (2) the MAOB gene was found specifically associated in the adult ADHD sample (P=0.0029; OR=1.90) and (3) the 5HT2A gene showed evidence of association only with the combined ADHD subtype both in adults (P=0.0036; OR=1.63) and children (P=0.0084; OR=1.49). Our data support the contribution of the serotoninergic system in the genetic predisposition to ADHD, identifying common childhood and adulthood ADHD susceptibility factors, associations that are specific to ADHD subtypes and one variant potentially involved in the continuity of the disorder throughout lifespan.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/genética , Dopa Descarboxilase/genética , Monoaminoxidase/genética , Polimorfismo de Nucleotídeo Único , Receptor 5-HT2A de Serotonina/genética , Serotonina/genética , Adolescente , Adulto , Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Criança , Análise Mutacional de DNA/métodos , Feminino , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Humanos , Desequilíbrio de Ligação , Masculino , Pessoa de Meia-Idade , Razão de Chances , Adulto Jovem
5.
Toxicol Lett ; 193(1): 26-32, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20006688

RESUMO

Benzene, a ubiquitous human carcinogen, forms DNA adducts through its metabolites such as p-benzoquinone (p-BQ) and hydroquinone (HQ). N(2)-(4-Hydroxyphenyl)-2'-deoxyguanosine (N(2)-4-HOPh-dG) is the principal adduct identified in vivo by (32)P-postlabeling in cells or animals treated with p-BQ or HQ. To study its effect on repair specificity and replication fidelity, we recently synthesized defined oligonucleotides containing a site-specific adduct using phosphoramidite chemistry. We here report the repair of this adduct by Escherichia coli UvrABC complex, which performs the initial damage recognition and incision steps in the nucleotide excision repair (NER) pathway. We first showed that the p-BQ-treated plasmid was efficiently cleaved by the complex, indicating the formation of DNA lesions that are substrates for NER. Using a 40-mer substrate, we found that UvrABC incises the DNA strand containing N(2)-4-HOPh-dG in a dose- and time-dependent manner. The specificity of such repair was also compared with that of DNA glycosylases and damage-specific endonucleases of E. coli, both of which were found to have no detectable activity toward N(2)-4-HOPh-dG. To understand why this adduct is specifically recognized and processed by UvrABC, molecular modeling studies were performed. Analysis of molecular dynamics trajectories showed that stable G:C-like hydrogen bonding patterns of all three Watson-Crick hydrogen bonds are present within the N(2)-4-HOPh-G:C base pair, with the hydroxyphenyl ring at an almost planar position. In addition, N(2)-4-HOPh-dG has a tendency to form more stable stacking interactions than a normal G in B-type DNA. These conformational properties may be critical in differential recognition of this adduct by specific repair enzymes.


Assuntos
Derivados de Benzeno/química , Adutos de DNA/efeitos dos fármacos , Nucleotídeos de Desoxiguanina/química , Endodesoxirribonucleases/metabolismo , Proteínas de Escherichia coli/metabolismo , Simulação por Computador , Adutos de DNA/genética , DNA Glicosilases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , DNA Bacteriano/efeitos dos fármacos , DNA Bacteriano/genética , Endodesoxirribonucleases/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Conformação de Ácido Nucleico , Oligonucleotídeos/química , Plasmídeos/genética , Relação Estrutura-Atividade
6.
Genomics ; 84(4): 647-60, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15475242

RESUMO

Aberrant promoter methylation and associated chromatin changes are primarily studied in human malignancies. Thus far, mouse models for human cancer have been rarely utilized to study the role of DNA methylation in tumor onset and progression. It would be advantageous to use mouse tumor models to a greater extent to study the role and mechanism of DNA methylation in cancer because mouse models allow manipulation of the genome, study of samples/populations with a homogeneous genetic background, the possibility of modulating gene expression in vivo, the statistical power of using large numbers of tumor samples, access to various tumor stages, and the possibility of preclinical trials. Therefore, it is likely that the mouse will emerge as an increasingly utilized model to study DNA methylation in cancer. To foster the use of mouse models, we developed an arrayed mouse NotI-EcoRV genomic library, with clones from three commonly used mouse strains (129SvIMJ, FVB/NJ, and C57BL/6J). A total of 23,040 clones representing an estimated three- to fourfold coverage of the mouse genome were arrayed in 60 x 384-well plates. We developed restriction landmark genomic scanning (RLGS) mixing gels with 32 plates to enable the cloning of methylated sequences from RLGS profiles run with NotI-EcoRV-HinfI. RLGS was used to study aberrant methylation in two mouse models that overexpressed IL-15 or c-Myc and developed either T/NK-cell leukemia or T-cell lymphomas, respectively. Careful analysis of 198 sequences showed that 188 (94.9%) identified CpG-island sequences, 132 sequences (66.7%) had homology to the 5' regions of known genes or mRNAs, and all 132 NotI-EcoRV clones were located at the same CpG islands with the predicted promoter sequences. We have also developed a modified pGL3-based luciferase vector that now contains the NotI, AscI, and EcoRV restriction sites and allows the rapid cloning of NotI-EcoRV library fragments in both orientations. Luciferase assays using NotI-EcoRV clones confirmed that the library is enriched for promoter sequences. Thus, this library will support future genetic and epigenetic studies in mouse models.


Assuntos
Ilhas de CpG/genética , Metilação de DNA , Regulação Neoplásica da Expressão Gênica/genética , Biblioteca Gênica , Regiões Promotoras Genéticas/genética , Animais , Clonagem Molecular , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Genoma Humano , Humanos , Interleucina-15/genética , Interleucina-15/fisiologia , Leucemia Experimental/genética , Leucemia Experimental/metabolismo , Luciferases/metabolismo , Linfoma/genética , Linfoma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Animais , Mapeamento por Restrição
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa