Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Genes Dev ; 31(7): 634-638, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28428262

RESUMO

The EGF signaling pathway specifies neuronal identities in the Drosophila embryo by regulating developmental patterning genes such as intermediate neuroblasts defective (ind). EGFR is activated in the ventral midline and neurogenic ectoderm by the Spitz ligand, which is processed by the Rhomboid protease. CRISPR/Cas9 was used to delete defined rhomboid enhancers mediating expression at each site of Spitz processing. Surprisingly, the neurogenic ectoderm, not the ventral midline, was found to be the dominant source of EGF patterning activity. We suggest that Drosophila is undergoing an evolutionary transition in central nervous system (CNS)-organizing activity from the ventral midline to the neurogenic ectoderm.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/genética , Embrião não Mamífero/metabolismo , Fator de Crescimento Epidérmico/genética , Receptores ErbB/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Proteínas de Membrana/genética , Neurogênese/genética , Receptores de Peptídeos de Invertebrados/metabolismo , Animais , Sistemas CRISPR-Cas , Linhagem da Célula , Células Cultivadas , Sistema Nervoso Central , Drosophila/embriologia , Proteínas de Drosophila/antagonistas & inibidores , Embrião não Mamífero/citologia , Fator de Crescimento Epidérmico/antagonistas & inibidores , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/genética , Feminino , Masculino , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Receptores de Peptídeos de Invertebrados/genética , Transdução de Sinais
2.
PLoS Genet ; 9(8): e1003740, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24009528

RESUMO

The development of morphological traits occurs through the collective action of networks of genes connected at the level of gene expression. As any node in a network may be a target of evolutionary change, the recurrent targeting of the same node would indicate that the path of evolution is biased for the relevant trait and network. Although examples of parallel evolution have implicated recurrent modification of the same gene and cis-regulatory element (CRE), little is known about the mutational and molecular paths of parallel CRE evolution. In Drosophila melanogaster fruit flies, the Bric-à-brac (Bab) transcription factors control the development of a suite of sexually dimorphic traits on the posterior abdomen. Female-specific Bab expression is regulated by the dimorphic element, a CRE that possesses direct inputs from body plan (ABD-B) and sex-determination (DSX) transcription factors. Here, we find that the recurrent evolutionary modification of this CRE underlies both intraspecific and interspecific variation in female pigmentation in the melanogaster species group. By reconstructing the sequence and regulatory activity of the ancestral Drosophila melanogaster dimorphic element, we demonstrate that a handful of mutations were sufficient to create independent CRE alleles with differing activities. Moreover, intraspecific and interspecific dimorphic element evolution proceeded with little to no alterations to the known body plan and sex-determination regulatory linkages. Collectively, our findings represent an example where the paths of evolution appear biased to a specific CRE, and drastic changes in function were accompanied by deep conservation of key regulatory linkages.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Evolução Molecular , Pigmentação/genética , Sequências Reguladoras de Ácido Nucleico/genética , Diferenciação Sexual/genética , Fatores de Transcrição/genética , Animais , Sequência Conservada/genética , Proteínas de Ligação a DNA/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Variação Genética , Proteínas de Homeodomínio , Mutação , Fatores de Transcrição/fisiologia
3.
Dev Biol ; 385(2): 417-32, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24269556

RESUMO

Trait development results from the collaboration of genes interconnected in hierarchical networks that control which genes are activated during the progression of development. While networks are understood to change over developmental time, the alterations that occur over evolutionary times are much less clear. A multitude of transcription factors and a far greater number of linkages between transcription factors and cis-regulatory elements (CREs) have been found to structure well-characterized networks, but the best understood networks control traits that are deeply conserved. Fruit fly abdominal pigmentation may represent an optimal setting to study network evolution, as this trait diversified over short evolutionary time spans. However, the current understanding of the underlying network includes a small set of transcription factor genes. Here, we greatly expand this network through an RNAi-screen of 558 transcription factors. We identified 28 genes, including previously implicated abd-A, Abd-B, bab1, bab2, dsx, exd, hth, and jing, as well as 20 novel factors with uncharacterized roles in pigmentation development. These include genes which promote pigmentation, suppress pigmentation, and some that have either male- or female-limited effects. We show that many of these transcription factors control the reciprocal expression of two key pigmentation enzymes, whereas a subset controls the expression of key factors in a female-specific circuit. We found the pupal Abd-A expression pattern was conserved between species with divergent pigmentation, indicating diversity resulted from changes to other loci. Collectively, these results reveal a greater complexity of the pigmentation network, presenting numerous opportunities to map transcription factor-CRE interactions that structure trait development and numerous candidate loci to investigate as potential targets of evolution.


Assuntos
Abdome , Drosophila melanogaster/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Pigmentação/genética , Animais , Drosophila melanogaster/genética , Feminino , Masculino , Interferência de RNA , Especificidade da Espécie , Fatores de Transcrição/genética , Transgenes
4.
Evol Dev ; 15(6): 442-57, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24261445

RESUMO

The evolution of gene networks lies at the heart of understanding trait divergence. Intrinsic to development is the dimension of time: a network must be altered during the correct phase of development to generate the appropriate phenotype. One model of developmental network evolution is the origination of dimorphic (male-specific) abdomen pigmentation in the fruit fly subgenus Sophophora. In Drosophila (D.) melanogaster, dimorphic pigmentation is controlled by the dimorphic expression of the paralogous Bab1 and Bab2 transcription factors that repress pigmentation. These expression patterns are thought to have evolved from a monomorphic ancestral state. Here we show that the spatial domain and contrast in dimorphic Bab expression increases during the latter half of pupal development, and this late pupal expression is necessary and sufficient to suppress pigmentation. Late pupal Bab expression was monomorphic for species from basal clades exhibiting monomorphic pigmentation, though dimorphic expression was observed in D. pseudoobscura that represents an intermediate-branching monomorphic clade. Among species from the dimorphic Sophophora clades, Bab expression was dimorphic, but a poor correlation was found between the domains of expression and male pigmentation. Lastly, while Bab paralog co-expression was generally observed, an instance of paralog-specific expression was found, indicating more complex regulatory mechanisms and mutational effects have shaped the evolution of the bab locus. These results highlight the importance of the time and place of Bab expression for pigmentation development and evolution, and suggest that dimorphism evolved early in Sophophora, but diversity in male pigmentation was not further shaped by alterations in Bab expression.


Assuntos
Evolução Biológica , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Evolução Molecular , Feminino , Masculino , Pigmentação , Caracteres Sexuais , Fatores de Transcrição/genética
6.
J Vis Exp ; (58)2011 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-22215325

RESUMO

Gene expression patterns are specified by cis-regulatory element (CRE) sequences, which are also called enhancers or cis-regulatory modules. A typical CRE possesses an arrangement of binding sites for several transcription factor proteins that confer a regulatory logic specifying when, where, and at what level the regulated gene(s) is expressed. The full set of CREs within an animal genome encodes the organism's program for development, and empirical as well as theoretical studies indicate that mutations in CREs played a prominent role in morphological evolution. Moreover, human genome wide association studies indicate that genetic variation in CREs contribute substantially to phenotypic variation. Thus, understanding regulatory logic and how mutations affect such logic is a central goal of genetics. Reporter transgenes provide a powerful method to study the in vivo function of CREs. Here a known or suspected CRE sequence is coupled to heterologous promoter and coding sequences for a reporter gene encoding an easily observable protein product. When a reporter transgene is inserted into a host organism, the CRE's activity becomes visible in the form of the encoded reporter protein. P-element mediated transgenesis in the fruit fly species Drosophila (D.) melanogaster has been used for decades to introduce reporter transgenes into this model organism, though the genomic placement of transgenes is random. Hence, reporter gene activity is strongly influenced by the local chromatin and gene environment, limiting CRE comparisons to being qualitative. In recent years, the phiC31 based integration system was adapted for use in D. melanogaster to insert transgenes into specific genome landing sites. This capability has made the quantitative measurement of gene and, relevant here, CRE activity feasible. The production of transgenic fruit flies can be outsourced, including phiC31-based integration, eliminating the need to purchase expensive equipment and/or have proficiency at specialized transgene injection protocols. Here, we present a general protocol to quantitatively evaluate a CRE's activity, and show how this approach can be used to measure the effects of an introduced mutation on a CRE's activity and to compare the activities of orthologous CREs. Although the examples given are for a CRE active during fruit fly metamorphosis, the approach can be applied to other developmental stages, fruit fly species, or model organisms. Ultimately, a more widespread use of this approach to study CREs should advance an understanding of regulatory logic and how logic can vary and evolve.


Assuntos
Drosophila melanogaster/genética , Elementos Reguladores de Transcrição , Transgenes , Animais , Animais Geneticamente Modificados , Mutação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa